
ANGLO-AUSTRALIAN OBSERVATORY AAO/MESS_6
DRAMA Software Report 6
Version 0.4.1

Tony Farrell
23-Feb-95

A portable (VMS compatible) message code system

Contents

1 Introduction 3

2 Error handling 3
2.1 A survey of error handling techniques . 3

2.1.1 The VMS technique . 4
2.1.2 The UNIX technique . 4
2.1.3 The Starlink (ADAM) technique . 4

2.2 AAO real time system requirements . 5

3 Description 5

4 Constructing Messages 6
4.1 The message source file . 7
4.2 Compiling the Message Source file . 8

5 The Mess routines 8

6 Compatibilty with VMS messages 9
6.1 VMS MESSAGE features which are not supported 9
6.2 VMS MESSAGE features which are ignored . 10
6.3 VMS MESSAGE restrictions lifted in MESSGEN 10

A Programs 11
A.1 messgen — Compile message definition files to produce various include files . . . 11
A.2 messana — Analyze message codes. 12

B Mess routine descriptions 12
B.1 MessFacility — Return the facility number associated with a message code. . . . 13
B.2 MessFacilityKnown — Returns true if the specified facility is known to the system. 14
B.3 MessGetMsg — Return message text for a given message number. 15
B.4 MessNumber — Return the number of a message 17

AAO/MESS_6 2

B.5 MessPutFacility — Add a new message facility to the list of known facilities . . . 18
B.6 MessPutFlags — Sets the default components when a message is returned. . . . 19
B.7 MessSeverity — Return the severity of a message 20
B.8 MessStatusToSysExit — Given a status code, return an exit value. 21

C Source File Statements 22
C.1 Base Message Number Directive . 22
C.2 End Directive . 23
C.3 Facility Directive . 24
C.4 Message definition . 25
C.5 Severity Directive . 27

Revisions:

V0.4.1 23-Feb-1995 Update program and routine descriptions.

AAO/MESS_6 3

1 Introduction

The MESSGEN utility and the Mess routines provide a portable technique for generating unique
error codes and then associating text with the error codes at run time.

MESSGEN will generate, if required, include files defining constants for each error code, in the C,
Fortran, (Vax) Pascal 1 and TCL languages.

The Mess routines provide the ability to fetch the text associated with each message at program
run time.

The grammer used to specify the message codes and associated text is a subset of that accepted
by the VMS message utility and generates codes compatible with those generated by VMS
message. This allows existing VMS code to be ported to other machines and allows existing
user interfaces running on VMS machines to translate MESSGEN error codes into text.

2 Error handling

2.1 A survey of error handling techniques

Various techniques are used for handling and reporting errors within computer programs. Most
of these are a combination of two basic handling techniques and two basic reporting techniques.

Normally, a routine/function encounting an error which it cannot recover from will do one of
two things-

1. Return a value indicating that an error has occurred.

2. Cause an exception.

The first of these is simple but requires constant checking of status values, thus the second of
these is often preferred. Unfortunately, to be done properly, it requires good operating system
and language support. It is very hard to use in a multiple language environment in a portable
manner.

The two possible reporting techniques are

1. Output details of the error in the routine in which the error has occurred

2. Return or set an error code which allows details of the error to be determined.

The first technique ensures that full details of errors are output (such as the name of files involved
etc), but causes problems when higher level code wishes to handle the error itself.

The second technique provides good control over error reporting for the upper level software,
but has trouble providing complete details of the error (such as the names of files involved).

1Since the original Pascal Standard does not support4 include files, its not clear how portable the Pascal output
is.

AAO/MESS_6 4

2.1.1 The VMS technique

VAX/VMS uses a combination of both error handling techniques. Most VMS routines return a
status code, although some cause exceptions. Error report is supported by the provision of a high
quality message code system. It allows every routine to return a specific error code (although
many return generic system wide codes) and provides a unique mapping of these error codes to
messages.

User interface code simply looks up the unique text associated with each error code and outputs
it as necessary using system calls.

The VMS exception system allows additional information to be added to the message, such as
additional supplemental messages or the names of files.

Users may define their own message codes which can then be handled correctly by VMS. System
managers can ensure such codes are unique by prescribing Facility numbers for each system.

There are two drawbacks. First, if the exception technique is not used, information (such as file
names) can be lost. Second, it is VMS specific.

2.1.2 The UNIX technique

Under UNIX and most similar systems (e.g. VxWorks), the first error handling technique is used.
Most routines return a value which indicates and error has occurred. This value is normally just
something like zero or minus one. Additionally, the originator of the error sets a global variable
(errno) to a value which indicates the reason for the error. Although there is generally a string
associated with each errno value, it is not always appropriate or specific enough.

There is no way for programmers to associate text with their own codes without rebuilding the
operating system. Additionally, there is no technique specified for generating unique error codes.

Generally, error reporting is done by higher level code writting messages.

2.1.3 The Starlink (ADAM) technique

Starlink software uses a complex technique designed for building software systems out of multiple
layers of libraries.

Generally, each routine has a status argument. If the status argument is non-zero on entry, then
the routine does nothing. If an error occurs in the routine, then, status is set to some value
(normally a VMS message code, since Starlink software originated on VMS machines).

Additionally, any routine setting status is supposed to report an error. The routines for reporting
an error allow the routine to save an appropriate text message (including file names etc., if
necessary) in such a way that higher software levels can do one of the following-

� Add further error reports to provide more context.

� Write all reported messages to the user.

� Clear status and all the reported messages.

AAO/MESS_6 5

Starlink provides various techniques allowing for most possible cases. By making use of VMS
message codes, unique status values can be used, allowing upper level software good control over
error handling.

Unfortunately, a lot of starlink software just sets bad status, without reporting the error (Al-
though this is slowly changing). This has generally not been too much of a problem as the VMS
message system allowed messages to be associated with status values, but it causes problems
with UNIX software.

Also, the error reporting software is a complex and large package in itself, not always suitable
for inclusion in small real time tasks.

With the move to UNIX, Starlink is discouraging the use of VMS message codes, particularly
the reliance on the association of a text string with the error code.

2.2 AAO real time system requirements

AAO VMS software has generally made extensive use of the VMS message code system. It
works well in a real time system involving multiple processes, since message codes are easy to
pass between processes. Because it is easy to generate unique message codes, we have not been
inclined to use the Starlink error reporting system very much, although it is used to add context
to errors.

With the move to UNIX systems, our reliance on VMS style error codes is a potential problem.
Although we do intend to provide a Starlink style error reporting system (somewhat simplified),
as mentioned above, it is not always suitable for real time systems, especially distributed ones.
Additionally, we still intend using current VMS based user interfaces for many systems.

As a result, we find it desirable to be able to generate and make use of VMS style message codes
on UNIX machines. The MESSGEN utility and Mess routines provide this ability.

3 Description

The messages generated this system are normally displayed to the user as a line of alphanumeric
codes and text explaining the condition that caused the message to be issued.

Messages are normally displayed in the following format:

%FACILITY-L-IDENT, message-text

FACILITY
Specifies the abbreviated name of the software component that issued the message.

L
Show the severity level of the condition that caused the message. The five severity levels are
represented by the following codes

S Success.

AAO/MESS_6 6

I Informational.

W Warning.

E Error.

F Fatal or severe.

IDENT
Identifies a symbol which represents the message

message-text
Explains the cause of the message.

4 Constructing Messages

You construct messages by writing a message source file (a .msg file) and compiling it with the
MESSGEN utility.

For each message, a 32 bit code is generated. The exact bit order is dependent upon the machine
byte order, but for a VAX, the format is

Bits 0-2 The severity, as follows

Symbol Value Description

STS_K_WARNING 0 Warning.
STS_K_SUCCESS 1 Success.
STS_K_ERROR 2 Error.
STS_K_INFO 3 Informational
STS_K_SEVERE 4 Severe (Fatal) error

5 Reserved
6 Reserved
7 Reserved

These symbols are defined in mess.h, as are the symbols STS_M_SEVERITY (7) and
STS_M_NOTSEVERITY (The inverse of severity).

Bits 3-14 Message number (1 - 4095).

Bit 15 Reserved, must be set true.

Bits 16-26 Facility (system) number (1 - 2047).

Bit 27 Reserved, must be set true.

Bits 28- 32 Reserved, must be set false.

You can refer to the message code in your programs by means of Symbols defined in include
files. These include files (C, Fortran or Pascal) can be generated by MESSGEN. These symbols
consist of

AAO/MESS_6 7

� The symbol prefix defined in the facility directive.

� The symbol name defined in the message definition.

4.1 The message source file

The message source file consists of message definition statements and directive that define the
message text, the message code values and the message symbol. The various elements that are
normally including in a message source file are-

� Facility directive.

� Severity directive.

� Base message number directive.

� End directive.

� Comments.

The first non-comment statement must be a .FACILITY directive. All messages defined after a
.FACILITY statement are associated with that facility. A .END directive ends the list of messages
associated with a particular facility. Currently, only one facility can be defined in a file.

Severity levels can be specified by a .SEVERITY directive or by including a severity qualifier as
part of the message definition. (With VMS MESSAGE, you must specify the severity, but with
MESSGEN, it defaults to ERROR).

The following is an example of a message file-

.FACILITY DITS,2000/PREFIX=DITS__

!

! these lines are comments

!

.SEVERITY FATAL

!

TASKDISC <Task disconnected>

MACHLOST <The machine on which the task was running has been lost>

FINDINGPATH <Already trying to find a path to this task>

INVMSGLEN <Message length is too small for a Dits message>/WARNING

.END

The facility number (2000), is what makes the message numbers unique. You should ensure you
have chosen a message number unique to your system. 2

2The AAO uses the facility numbers 1800 to 1899, allocated by starlink. A facility number can be allocated
by editing the first message in the PROG bulletin folder.

AAO/MESS_6 8

4.2 Compiling the Message Source file

Message source files must be compiled before the messages defined in them can be used.

The -c option to the messgen command causes a C language include file to be generated.
This include file will contain definitions for the symbols DITS__TASKDISC, DITS__MACHLOST,
DITS__FINDINGPATH and DITS__INVMSGLEN. The DITS__ part has come from the PREFIX speci-
fication.

The are various other options to chose from, see Appendix-A for more details, but of particular
interest is the -t option, which generates the table file referenced in the next section.

Message source files can also be compiled with the VMS MESSAGE command to generate object
files which can be linked with VMS programs, making the message text available to VMS system
services, such as SYS$GETMSG.

5 The Mess routines

The Mess routines provide the ability, given the message code, to fetch the string specified in
the message file for a message.

When the -t option is specified to the messgen command, a file with a suffix of .msgt.h

(_msgt.h under VMS) is generated. This include file defines a table, named MessFac_facname,
where facname is the facility name. In the above example, the table name is MessFac_DITS.
This table specifies the message text for each message code in the facility.

For each message facility which may be used by a program, a call of the form-

MessPutFacility(&MessFac_DITS);

should be made, from a module which included the file generated by the -t option. Such a call
makes the facility known to the Mess routines.

Normally, the initialisation routine of a package will call MessPutFacility for the message
facility it uses.

To fetch the text associated with a message, the MessGetMessage routine is used. The following
example uses the above message definition file-

#include "mess.h"

#include "dits.h"

#ifdef VMS

include "dits_msgt.h"

#else

include "dits.msgt.h"

#endif

#include <stdio.h>

AAO/MESS_6 9

int main()

{

char buffer[200];

MessPutFacility(&MessFac_DITS);

MessGetMsg(DITS__TASKDISC,0,200,buffer);

printf("%s\n",buffer);

}

When compiled and run, this example produces the output-

%DITS-F-TASKDISC, Task disconnected

The MessPutFlags routines allows the programmer to turn off output of various parts of the
message text.

6 Compatibilty with VMS messages

The files accepted by MESSGEN are defined to be a subset of the files accepted by the VMS MESSAGE

utility. It should be noted that although MESSGEN is defined in this way, some rescrictions
imposed by VMS MESSAGE do not exist in MESSGEN and you can therefore create files accepted by
MESSGEN but not by VMS MESSAGE.

6.1 VMS MESSAGE features which are not supported

The following VMS MESSAGE features are not supported by MESSGEN.

� /SHARED and /SYSTEM qualifiers to the .FACILITY directive. These qualifiers are VMS

specific.

� Use of FAO arguments within messages. These require VMS specific system services are
only of use with the VMS exception system.

� /FAO_COUNT qualifier to message definitions. Relevant to FAO arguments.

� /USER_VALUE qualifier to message definitions.

� Expressions.

� Use of the dollar sign ($) within message names. Most UNIX compilers do not accept them,
so a warning is output by MESSGEN.

� You may only define one facility in a file.

AAO/MESS_6 10

6.2 VMS MESSAGE features which are ignored

The IDENT, .LITERAL, .PAGE and .TITLE directives are ignored, as is anything on the rest
of the line they are on. (They are treated as comment initiators).

6.3 VMS MESSAGE restrictions lifted in MESSGEN

In MESGEN, identifier names can be of any length and the parameters to directives need not
be on the same line as the directive.

AAO/MESS_6 11

A Programs

This section details the various programs available in the Mess systems.

A.1 messgen — Compile message definition files to produce various include
files

Function: Compile message definition files to produce various include files

Synopsis:

messgen [-cofpdtl] [-C cname] [-F fname] [-P pname]

filename[.msg]

Description: This program compiles a message definition file. It is capable of producing in-
clude files defining constants for message codes in The C, Fortran and Pascal languages.
Additionally, it can produce a message table, which can be supplied in a call to MessPut-
Facility() to make the message details available to calls to MessGetMsg().

The C lanaguage include files are bracketed in an #ifdef statement such that they are only
included once.

Options:

-c Generate a C language include file which defines constants of the form “PrefixName”,
for each message. The definitions are written to the file “basename.h”.

-C cname As per -c, but the definitions are written to the file “basename.cname”.

-f Generate a Fortran language include file which defines constants of the form “Prefix-
Name”, for each message. The definitions are written to the file “basename.f” on
unix machines and the file “basename.for” on VMS machines

-F cname As per -f, but the definitions are written to the file “basename.fname”.

-p Generate a Pascal language include file which defines constants of the form “Prefix-
Name”, for each message. The definitions are written to the file “basename.pin”.

-P cname As per -p, but the definitions are written to the file “basename.pname”.

-d Generate a TCL language include file which defines variables of the form “PrefixName”,
for each message. The definitions are written to the file “basename.tcl”.

-D dname As per -p, but the definitions are written to the file “basename.dname”.

-o When writing include files, generate the symbol “PrefixOK”, with a value of 0.

-t Generate a message table which can be used when calling MessPutFacility. This is
written to the file “basename_msgt.h”

-l Log the opening of input and output files.

-j Produce Java to the file “basename.java”. Note, the class name will be “basename”.
The resulting class extends DramaStatus.

AAO/MESS_6 12

-J package Produce java, but to be within the specified package. File is “basename”.java.
Note, the class name will be “basename”. The resulting class extends DramaStatus.

-x filename Specifies the output file name explicity. If used, only one output type can
be selected.

basename is part after the last slash if any, minus the suffix “.msg” if it exists.

See Also: MessPutFacility(), MessGetMsg(), Vax/VMS message utility manual.

Support: Tony Farrell, AAO

A.2 messana — Analyze message codes.

Function: Analyze message codes.

Synopsis: messana [code...]

Description: Each message code (which should be an integer in a form understood by the C
RTL function strtol()) is analyzed and its facility number, message number and severity
output.

Support: Tony Farrell, AAO

B Mess routine descriptions

This appendix describes the various Mess routines.

AAO/MESS_6 13

B.1 MessFacility — Return the facility number associated with a message
code.

Function: Return the facility number associated with a message code.

Description: Analyzes a mesage code and returns the facility assocaited with the message.

Language: C

Call:
(int) = MessFacility (code)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) code (StatusType) The message code.

Include files: mess.h

Support: Tony Farrell, AAO

AAO/MESS_6 14

B.2 MessFacilityKnown — Returns true if the specified facility is known to
the system.

Function: Returns true if the specified facility is known to the system.

Description: This routine returns true if the specified facility is known to the system.

Language: C

Call:
(int) = MessFacilityKnown (int facilityNum)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(int) facilityNum (int) The number of the facility to check for.

Include files: mess.h

External functions used: None

External values used: None

Prior requirements: None

Support: Tony Farrell, AAO

AAO/MESS_6 15

B.3 MessGetMsg — Return message text for a given message number.

Function: Return message text for a given message number.

Description: Searches the known message facilities for a message of the given number. In this
search, the severity of the supplied message number is ignored. If found, a message string
is constructed according to the details requested in the flags argument. The format is-

“%FACILITY-S-NAME, text”

where-

FACILITY The name of the correspond facility.
S The severity of the message, as supplied in the

call to this routine (The same message can have
different severities).

NAME The message name.
text The text associated with the message.

If the message cannot be found, a suitable default text is returned. As a special case, the
message number 0 is always defined and returns an appropriate OK text.

When running under VMS the behaviour changes. If a message cannot be found, then the
SYS$GETMSG system service is called to attempt to find the message in the VMS tables. This
will work if the message is a VMS system message or the message is known to the current
process (either an object file generated by message/object is linked to the current image
or a “set message” command has been used to add the message to the current process)

Language: C

Call:
(int) = MessGetMsg (msgid, flags, buflen, buffer)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) msgid (StatusType) The identification of the message to be retrieved.

(>) flags (Int) Message components to be returned. Set the following bits true to include
the component -

MESS_M_TEXT Message text.
MESS_M_IDENT Message identifier.
MESS_M_SEVERITY Message severity indicator.
MESS_M_FACILITY Facility name.

If flags is 0, then the default flags, set by MessSetFlags, is used. If MessSetFlags has not
been called, then all are set true, except under VMS, where the processes VMS message mask
is used.

(>) buflen (Int *) The length of buffer.

AAO/MESS_6 16

(>) buffer (Char *) The buffer to place the message in. If it is too long, then the message
is truncated.

Include files: mess.h

External functions used:

strncat CRTL Concentrate one string to another.
sprintf CRTL Formated print to a string.

lib$getjpi VMS-RTL (VMS version only) Get job process information.
sys$getmsg VMS (VMS version only) Get VMS message text.

Function value: Return 1 if the message is found and 0 if it is not.

External values used: None

Prior requirements: None

Support: Tony Farrell, AAO

AAO/MESS_6 17

B.4 MessNumber — Return the number of a message

Function: Return the number of a message

Description: Analyzes a message code and returns the number of the message within the
facility

Language: C

Call:
(int) = MessNumber(code)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) code (StatusType) The message code.

Include files: mess.h

Support: Tony Farrell, AAO

AAO/MESS_6 18

B.5 MessPutFacility — Add a new message facility to the list of known
facilities

Function: Add a new message facility to the list of known facilities

Description: The new message facility is added to the beginning of the list. Any other facility
of the same number will be ignored.

Under UNIX and VMS, this list is kept on a process specific basis. Under VxWorks, it is
kept on a global basis.

Under VxWorks, a mutual exclusion semaphore is used to protect the data structure
against two or more tasks accessing the list at the same time. If the semaphore has
already been taken by a task, other tasks will block until it becomes available. Since the
Semaphore is priority inversion safe, task deletion safe, queues pended tasks on the bases
of their priority and the operation is quick, no task should block for any length of time.
This makes the use of this routine safe in all cases, except from interrupt handlers, thus,
this routine should not be called from interrupt handlers.

Language: C

Call:
(Void) = MessPutFacility (facility)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) facility (MessFacType *) The new facility as generated by the messgen utility.

Include files: mess.h

External functions used:

semMCreate VxWorks VxWorks only, create a mutual-exclusion
semaphore.

semTake VxWorks VxWorks only, take a semaphore.
semGive VxWorks VxWorks only, give a semaphore.

External values used: None

Prior requirements: None

Support: Tony Farrell, AAO

AAO/MESS_6 19

B.6 MessPutFlags — Sets the default components when a message is re-
turned.

Function: Sets the default components when a message is returned.

Description: This routine only has effect on MessGetMsg if that routine is called with its
flags argument equal to 0.

If this routine is not called, then all components of a message are returned by MessGetMsg,
otherwise this routine sets the components to be returned.

An exception is under VMS. Under VMS, if this routine is not called, MessGetMsg uses the
default VMS message flags.

Language: C

Call:
(Void) = MessPutFlags (int flags)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) flags (Int) Message components to be returned. If flags is specified as 0, then com-
ponents are return. Set the following bits true for include the component

MESS_M_TEXT Message text.
MESS_M_IDENT Message identifier.
MESS_M_SEVERITY Message severity indicator.
MESS_M_FACILITY Facility name.

Include files: mess.h

External functions used: None

External values used: None

Prior requirements: None

Support: Tony Farrell, AAO

AAO/MESS_6 20

B.7 MessSeverity — Return the severity of a message

Function: Return the severity of a message

Description: Analyzes a message code and returns the severity of the message

Language: C

Call:
(int) = MessSeverity(code)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) code (StatusType) The message code.

Include files: mess.h

Support: Tony Farrell, AAO

AAO/MESS_6 21

B.8 MessStatusToSysExit — Given a status code, return an exit value.

Function: Given a status code, return an exit value.

Description: This routine returns an appropiate value to be used with the main() function
return statement, given a status code.

Language: C

Call:
(int) = MessStatusToSysExit (StatusType code)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) code (StatusType) The message code to convert.

Include files: mess.h

Prior requirements: None

Support: Tony Farrell, AAO

AAO/MESS_6 22

C Source File Statements

C.1 Base Message Number Directive

Defines the value used in constructing the message code.

FORMAT .BASE number

statement number
parameter Specifies a number to be assocaited with the next message

definition

statement none

qualifiers

Description

By default, all of the message following a facility directive are numbered sequentially, beginning
with 1.

If you want to supersede this default numbering system, (for example, if you want to reserve
some message numbers for future assignment) specify a message number of you choice using the
base number directive. The message number is used as a base for the sequential numbering of
all messages that follow until another .BASE or the .END is encounted.

Example

.FACILITY SAMPLE,1/PREFIX=ABC_A

.SERVERITY ERROR

UNRECOG < Unrecognised keyword>

AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10

SYNTAX < Invalid syntax>

.END

The the first two message numbers are defined as 1 and 2. This sequential numbering is super-
seded by the base message message number directive, which assigns the message number 10 to
the third message.

AAO/MESS_6 23

C.2 End Directive

Terminates the entire list of messages for the facility.

FORMAT .END

statement none

parameter

statement none

qualifiers

Description

An End directive terminates the entire list of messages for a facility.

Example

.FACILITY SAMPLE,1/PREFIX=ABC_A

.SERVERITY ERROR

UNRECOG < Unrecognised keyword>

AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10

SYNTAX < Invalid syntax>

.END

The .END directive terminates the list of messages for the SAMPLE facility.

AAO/MESS_6 24

C.3 Facility Directive

Specifies the facility to which messages will apply.

FORMAT .FACILITY facnum[,]facnum/qualifier

statement facnam
parameter Specifies the facility name used in the facility field of the mes-

sage and in the symbol representing the facility number.

facnum
Specifies the facility number that is used to construct the 32-bit
value of the message code. A decimal value in the range 1 to
2047.

statement /PREFIX=prefix
qualifiers defines an alternate symbol prefix to be used in the message

symbol for all messages referring to this facility. The default
prefix is the facility name, followed by an underscore (_).

Description

The facility directive is the first directive in the message file. Both the facility name and the
facility number are required and can be separated by a comma or by any number of spaces or
tabs.

Example

.FACILITY SAMPLE,1/PREFIX=ABC__

.SERVERITY ERROR

UNRECOG < Unrecognised keyword>

AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10

SYNTAX < Invalid syntax>

.END

The facility statement in this message source file defines the messages belonging to the SAM-

PLE facility with facility number 1. The /PREFIX=ABC__ qualifier defines the message symbols
ABC__UNRECOG, ABC__AMBIG and ABC__SYNTAX.

AAO/MESS_6 25

C.4 Message definition

Defines the message symbol and the message text.

FORMAT name < message-text > /qualifier

statement name
parameters Specifies the name that is combined with the symbol prefix

(defined in the facility directive) to form the message symbol.
The name is used in the IDENT field of the message.

message-text
Defines the text explaining the condition that caused the mes-
sage to be issued. The message text can be delimited either by
angle brackets or by quotation marks. The text can be of any
length, but cannot be continued onto another line.

statement /SUCCESS
qualifiers Specifies the success level for a message. This qualifier overrides

any .SEVERITY directive in effect.

/INFORMATIONAL
Specifies the informational level for a message. This qualifier
overrides any .SEVERITY directive in effect.

WARNING/
Specifies the warning level for a message. This qualifier over-
rides any .SEVERITY directive in effect.

ERROR
Specifies the error level for a message. This qualifier overrides
any .SEVERITY directive in effect.

SEVERE
Specifies the severe level for a message. This qualifier overrides
any .SEVERITY directive in effect.

FATAL
Specifies the fatal level for a message. This qualifier over-
rides any .SEVERITY directive in effect. Fatal and severe are
equivalent.

AAO/MESS_6 26

Description

The message definition specifies the message text that will be displayed and the name used in
the IDENT field of the message. Additionally, you can use the message definition to specify the
severity level for the message.

Example

.FACILITY SAMPLE,1/PREFIX=ABC__

.SERVERITY ERROR

UNRECOG < Unrecognised keyword>

AMBIG " Ambiguous keyword"

.SEVERITY WARNING

.BASE 10

SYNTAX < Invalid syntax>

.END

This message source file contains a facility directive and three message definitions.

AAO/MESS_6 27

C.5 Severity Directive

Specifies the severity level to be associated with the messages that follow.

FORMAT .SEVRITY level

statement level
parameter Specifies the level of the condition that caused the message.

SUCCESS Produces a S code in a message.
INFORMATIONAL Produces an I code in a message.
WARNING Produces a W code in a message.
ERROR Produces an E code in a message.
SEVERE Produces a F code in a message.
FATAL Produces a F code in a message.

SEVERE is equivalent to FATAL and they can be used inter-
changeable; the severity level code for both of these if F.

statement none
qualifiers

Description

Following the facility directive, the message source file generally contains a severity directive.

Example

.FACILITY SAMPLE,1/PREFIX=ABC__

.SERVERITY ERROR

UNRECOG < Unrecognised keyword>

AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10

SYNTAX < Invalid syntax>

.END

The two severity directives include in this message source defines the severity levels for three
messages. The first two messages have a severity level of E; the third message has a severity
level of W.

