ANGLO-AUSTRALIAN OBSERVATORY

DRAMA Software Report 9
Version 0.4

AAO/GIT_SPEC_9

Tony Farrell

18-Jan-94
Generic Instrumentation Task Specification

Contents
1 Introduction 3
1.1 Imstrumentation Tasks . . . . . . . . . . . ..o 3
2 General 3
2.1 Task Initialisation . . . . . . . . . . e e 3
2.2 Action names . . . . . . ... e e 4
2.3 Action Arguments . . . . ... 4
2.4 Parameters . . . . . . . L e e e e e e e e e 4
2.5 Completion of Actions . . . . . . . . . . L 5
2.6 Error Reporting and Status Returns . . . . . . ... .. .. .o oL )
3 Standard Actions 5
4 Standard Parameters 7
5 Simulation 8
5.1 Use of Logical Names/Environment Variables . . . . . ... ... ... ... ... 8
5.2 Banning of Automatic Fall-back into Simulation Mode . . . . . . ... ... ... 8
5.3 Standard Simulation Levels . . . . . . . . . . . ... ... 9
6 Task Responsiveness 9
7 Logging 9
8 Task Status 10
9 The Git package 10
9.1 GitActivate . . . . . . . e 10
9.2 GitArgroutines . . . . . ..o 10
9.3 Parameters/Environment routines . . . . .. ... L0 oL 11
9.4 GitPathGet routines . . . . . . . . . . . . .o 11



AAO/GIT_SPEC_9 2

9.5 GitTpiroutines . . . . . . . . . . L 15
9.6 Parameter Monitor Support . . . . . . ... L Lo 15
9.6.1 Procedure Types . . . . . . . . . . 16
A Git Routines 17
A.1 GitActivate — Activate the Generic instrument task action handlers. . . . . . . . 18
A.2 GitArgGetD — Gets a double floating point argument value with checking against
ATANEZE. .« .« v v e e e e e e e e e 20
A.3 GitArgGetl — Gets an integer argument value with checking against a range. . . 22
A4 GitArgGetL — Gets a logical argument value. . . . . . . ... ... ... ... .. 24
A5 GitArgGetS — Gets a string argument value with checking against acceptable
values. . . . . . e 27
A.6 GitArgGetStruct — Gets a structure argument value. . . . . . ... ... .. .. 29
A.7 GitArgNamePos — Return the Id of an argument given its name and position. . 31
A8 GitEnvGetS — Get a value of a logical name/environment variable . . . . . . . . 32
A.9 GitMonitorForward — Setup and run a Monitor Forward operation. . . . . . . . 33
A.10 GitMonitorMessage — Initiate a Monitor Message. . . . . . . . . . ... ... .. 35
A.11 GitMonitorStart — Setup and run a monitor transaction. . . . . .. ... .. .. 36
A.12 GitMonitorStartF — Setup and run a monitor transaction. Version with flags
specifiable. . . . . Lo 38
A .13 GitParEnvGetS — Get a value from a parameter or, failing that, the environment. 40
A 14 GitPathGetComp — Complete the getting of a path. . . . . . . ... .. ... .. 41
A.15 GitPathGetInit — Initiate the getting of apath. . . . . ... ... ... ... .. 42
A.16 GitPutDelay — Set Action delay or timeout. . . . . . ... .. ... ... .... 44
A.17 GitPutDelayPar — Set Action delay or timeout from a parameter value. . . . . . 45
A.18 GitSimulation — Set a tasks’ simulation level and timebase. . . . . . . . . .. .. 46
A.19 GitTimer — An action routine used to implement an action timer. . . . . . . . . 48
A .20 GitTimerArgExtract — Basic argument extraction routine for use with GitTimer. 50
A.21 GitTpiDelete — Delete an Item from the Task/Package Infomation list. . . . . . 51
A .22 GitTpiGet — Get an Item from the Task/Package Infomation list. . . . . . . .. 52
A.23 GitTpilnit — Initialise Task Package Information handling for the current task. . 53
A .24 GitTpiPut — Put an Item to the Task/Package Infomation list. . . . . . . . . .. 54
Revisions:

V0.4 18-Jan-1993 Introduce GitMonitor routines, GitPutDelay() and GitPutDelayPar(). Add
GitArgGetStruct(). Various documentation errors are corrected.



AAO/GIT_SPEC_9 3

1 Introduction

This document defines some standards that should be adhered to by all DRAMA based in-
strumentation tasks .

The main reasons for defining such standards are

e to try to minimise unnecessary differences between instrumentation tasks. For example, it
is simply unnecessary that task A should use action name SHUTDOWN to exit whilst
task B uses EXIT.

e to provide facilities in all tasks that can be assumed to exist in all cases. For example, all
tasks should perform some form of simulation mode that permits them to be run in some
form in the absence of their hardware.

e to define those interfaces that are not already well-defined by the DRAMA environment
system.

This document assumes you have read the “Guide to Writing DRAMA Tasks” [1].

Note that we are not imposing standards on all DRAMA tasks, just on AAO tasks which
control instrumentation.

In addition, various routines which either help implement this standard or provide general help
to DRAMA task authors are introduced.

1.1 Instrumentation Tasks

An instrumentation task is a task responsible for controlling a major sub-system of an instru-
mentation system, such as a detector or spectrograph or a combination of these systems. Almost
all DRAMA tasks would fall under this definition. An exception is where small stripped down
tasks are used by an instrumentation task to perform special functions, such as to hide blocking
I/O operations (since the actual instrumentation task should always be able to accept messages).
These small tasks need not obey this standards. All other instrumentation tasks should!

2 General

2.1 Task Initialisation
Try to do as little as possible in the main() routine of your program. If anything goes wrong in
this routine, it is not always possible to direct messages to the correct user interface. In most

cases main() should only need to -

1. Initialise the parameter system using SdpInit().

!This document is the DRAMA equivalent of the ASD document - “General D-task Specifications”. That
document is specific to ADAM based tasks.



AAO/GIT_SPEC_9 4

Initialise Dits using DitsInit().

Tell Dits about the parameter system using DitsPutParSys().
Put Dits action handlers using DitsPutActionHandlers().
Create parameters using SdpCreate().

Enable the message facility of the task, using MessPutFacility().
Call DitsMain() and DitsStop().

N A T i

Four and five are often done by package activation routines. See [1], [3] and [4] for more details.

The real job of initialising the Instrument should be performed in a separate INITIALISE
action, which is normally the first action obeyed by the task.

Task names should be upper case only and less then 15 characters long. This will allow the task
to be controlled from an ADAM based user interface.

2.2 Action names

Action names should be upper case and no more then 15 characters. Dits allows longer names
and will distinguish between upper and lower case characters. You should avoid these features
since, if you use them, it may not be possible to invoke such actions from ADAM based user
interfaces and control tasks.

2.3 Action Arguments

The DitsGetArgument() routine allows an action to fetch the Sds id of its argument. When
an action is exiting, any argument value put with DitsPut Argument() will be made available
to the invoking task. Such arguments will normally have been constructed using the Arg
routines supplied as part of Sds. The Arg and Sds routines can be used to access arguments.

Many actions expect arguments to be supplied. In order to use the Arg routines to access them,
you must know what they are called. The various user interfaces will construct arguments using
the name Argumentn where n is the argument number starting at one.

Most arguments are optional. If not supplied the action should use an appropriate default.
Mandatory arguments are noted as such and actions with mandatory arguments should return
an error if the argument is not supplied.

See [1] and [5] for more details.

2.4 Parameters

Instrumentation tasks should enable and use the Sdp parameter system supplied as part of
Dits. In general, parameter names should be upper case and no more then 15 characters to
allow them to be seen by ADAM tasks. This is not required for Structured parameter items
which cannot in any case be handled by ADAM tasks.

See [1] and [3] for more details.



AAO/GIT_SPEC_9 5

2.5 Completion of Actions

An action never completes until whatever it initiates has completed. This means that an EX-
POSE action completes only when the exposure that it initiates completes, a READOUT
action completes only when the readout that it initiates is complete, and a POLL action com-
pletes only when the polling that it enables is disabled.

2.6 Error Reporting and Status Returns

Tasks will define their own facility codes and will use the MESSGEN utility to define status
values (see [4] for details) and associated text (a range of facility numbers has been allocated
to AAO and you can allocate new ones by modifying the first message in the PROG bulletin
board folder). Don’t expect control tasks to test for specific status responses. Instead, use the
severity bits. A control task will assume that an action has succeeded if it returns a success,
informational or warning status. If it returns an error status then the action has failed but it
may be possible to retry it.

The argument returned by an action may contain information which helps the control task to
decide how to recover from the error. The specification for the action in question should state
what use is made of the value string (for example, an action might return an error status together
with an integer encoded into the value string — a value of 0 might mean “retry the last action”
and a value of 1 might mean “retry the action before last and then retry the last one”). A fatal
error status always means that the control task should abort whatever sequence of actions it is
currently executing.

When writing instrumentation tasks, be aware that the user interface will always have output any
text sent using MsgOut() or the Ers routines (see [2]) and will always translate the returned
status. Try not to duplicate too much information. Specifically, please adhere to the following
rules:

1. Terminate messages with full stops.

2. Under DRAMA, the control task can find out the originating task of a message output
using MsgOut() or the one Ers routines. This will normally be prefixed to any message
when it is output. Message texts should take account of this by not including the task
name in the message.

3. Use the DitsErrorText() routine to translate status values.

3 Standard Actions

All Instrumentation tasks should provide the following actions -

INITIALISE Initialise the task. This involves setting up such things as simulation level and
hardware. It must be the first action which is executed and except where noted, other
actions should refuse to do anything if the task has not been initialised.



AAO/GIT_SPEC_9 6

CTRLC Interrupt the task. The interpretation of such an interrupt is entirely up to the task
and will usually be state-dependent.

DUMP_LOG Dump the internally-saved recent history to the log file.

The optional argument should be a character string which will be written to the log file as
part of the dump. It specifies the reason for the dump and is normally directed to readers
of the log.

EXIT Exit tidily from the task. The task can choose to reject this command if it is not in an
appropriate state. Equally, it can reschedule until it is in the correct state. That is up to
the task.

An argument is optional. It’s type and interpretation is task specific.

LOG_LEVEL Set logging level. Use to turn logging levels on or off. When a task is loaded,
the initial logging level is determined as described in section 7.

The mandatory argument is a character string is is passed directly to the logging routines.
See section 7 for more details.

POLL Begin polling instrument status. This action exists so that the task always has an
active action to which asynchronously occurring errors can be reported. If POLL needs
to report a problem to its originator, it can terminate returning a status in its completion
message and the originator will normally re-issue the POLL command. It may also use
DitsTrigger().

POLL can receive a KICK message, which should cause POLL it to exit.

The calling task should not make assumptions about the internal actions of the task
— POLL may not actually imply a polling loop but if there is no polling loop the
action should not complete, since this can lead to its originator continually detecting
that it has completed and continually re-issuing it. (POLL should put a request of
DITS_REQ_ASTINT in this case, see DitsPutRequest() for details).

Takes one optional argument which should be the polling interval in milliseconds.

POLL_PARAMETER Change the value of the poll parameter (with immediate effect). The
mandatory argument is the new polling interval in milliseconds.

RESET A complete reset of the system. Will stop anything currently in progress, but not the
POLL action, which should conceptually stop and restart itself. Most things will need
re-loading. Note that this may be a time-consuming operation.

The optional argument is a character string indicating what sort of reset should be pre-

formed. All tasks must support the following values:

SOFT Perform a partial reset. Exactly what is meant by this is a function of the instru-
ment in question.

FULL Attempt to restore the instrument to the same state that it was in after the
INITIALISE action completed.

HARD Reset hardware and then perform a FULL reset.



AAO/GIT_SPEC_9 7

Individual tasks may support additional values in addition to these ones. If the argument
is not supplied, the task should do a SOFT reset.

STATUS Get the current status of the task. This action returns an argument which described
the status. See section 8 for more details.

SIMULATE_LEVEL Set the current simulation level. A RESET may be required for a
change in level to take effect. When a task is loaded, the initial simulation level is deter-
mined as described in section 5 but this command may be sent prior to INI'TTALISE to
change initial setting.

There are two arguments. The first is a mandatory character string specifying the simu-
lation level. It should have one of the values specified in section 5. The second argument
is optional. It specifies the time base of the simulation mode. A time base of 10 indicates
simulation should take place ten times faster then normal. Likewise, a time base of 0.1
means they happen ten times slower.

UPDATE_NBD This action is required for compatability with ADAM control tasks (such as
the Observer Control Task). The details are to be specified later.

4 Standard Parameters

There are some parameters that should be provided by all tasks. They exist to permit control
tasks to find out about the task they are controlling, to enable configuration changes and to
help in debugging.

LOG_LEVEL This parameter contains the current logging level. It’s initial value is the default
logging level. For more details see section 7.

SIMULATE_LEVEL This indicates the current simulation level. It’s initial value is the
default simulation level. For more details, see section 5.

TIME_BASE This indicates the current simulation time base. It’s initial value is the default
simulation time base. For more details, see section 5.

ENQ_DEV_TYPE The type of device that is controlled by the task. It is a character param-
eter and must have a default value. The value should be one of a set of defined upper-case
keywords that indicate what sort of commands this task can be expected to respond to.
Possible values are
GCT Generic Control Task
DCDT Detector Control D-Task
DHDT Data Handling D-Task
DRT Data Recording Task
TEL Telescope D-task
IDT Instrument D-Task



AAO/GIT_SPEC_9 8

ENQ_DEV_DESCR A printable description of what this D-task does. It is a character
parameter and must have a default value. It should be possible to concatenate this with
ENQ_VER_NUM and ENQ_VER_DATE to give a pleasing summary message.

ENQ_VER_NUM The task version number. It is a character parameter and should have a
default value . It should be a string of the form “Vn.m.p.q” and should be identical to the
CMS class name corresponding to this version.

ENQ_VER_DATE The date that this version was created. It is a character parameter and
should have a default value. It should normally be the creation date of the CMS class
mentioned above in the form “dd-Mmm-yy”.

ENQ_DEV_NUMITEM Required for compatability with ADAM based control tasks. Should
be an integer with a value of zero.

5 Simulation

All tasks should provide some level of simulation. The minimum is that it should be possible
to load the task in the absence of the hardware. The maximum is that, once loaded, the task
should accept all commands and appear to be doing sensible things with them. All tasks should
accept the SIMULATE_LEVEL action.

If a task does not support the requested simulation level or time base, it does not return an
error message or status. Instead it does the best that it can and sets the actual values into the
SIMULATE_LEVEL and TIME_BASE parameters, which can then be read by the sender
of the command.

5.1 Use of Logical Names/Environment Variables

If, when initialising, the SIMULATE_LEVEL parameter has no value, the subsys_SIMULATE
logical name (VMS) or environment variable (UNIX/VxWorks) will be translated to provide a
value for it and this value will be set as the value of the parameter.

If, even after application of the above rules, no values for SIMULATE_LEVEL are found,
SIMULATE_LEVEL defaults to NONE (which is defined below) and TIME_BASE defaults
to 1.

5.2 Banning of Automatic Fall-back into Simulation Mode

It will not be acceptable to automatically enter some level of simulation as a result of a failure
to talk to the hardware. This practice has been followed in the past by some tasks, but is
dangerous in that it can lead to inadvertent use of simulation modes. It is now banned.



AAO/GIT_SPEC_9 9

5.3 Standard Simulation Levels

The following standard values for SIMULATE_LEVEL are defined. The values are upper-
case character strings. If individual authors require new ones they should get them added to
this standard list.

NONE No simulation is being performed.

BASIC task will load but commands that interact with the instrument may fail. This is the
minimum level that must be supported by all tasks.

COMMANDS Commands that interact with the instrument will work, but timing will not
be realistic and responses from the instrument will not be simulated.

STATUS Commands will work and status responses from the instrument will be simulated.

FULL Full simulation is being performed. Commands and status responses will work and will
take reasonably realistic amounts of time.

6 Task Responsiveness

A task should always be responsive to incoming messages. It must be possible to abort time
consuming operations, which can only be done if the task remains responsive to incoming mes-
sages.

To remain responsive while performing a time consuming operation, an action has one of three
options-

e An action can reschedule frequently. This is not too inefficient, it could be done say once
a second in an appropriate part of a calculation.

e An action can check if messages are available. This is done using DitsMsgAvail(). If
this returns a non-zero count then the action should reschedule. This technique is a bit
more efficient, but possibly more complex to implement.

e One of the previous methods are preferred, but not always possible. If your tasks calls a
time consuming routine over which it has no control (say a NAG routine), neither of the
above techniques are possible. In this case, you should create a new process or process
thread to handle the time consuming operation. You must then kill that process to abort
the operation.

All Instrumentation tasks must respond to messages within a second.

7 Logging

To be specified.



AAO/GIT_SPEC_9 10

8 Task Status

To be specified.

9 The Git package

A package is provided to help implement tasks which obey this standard.

The Git package also provides several other general purpose routines implementing functions
commonly required by tasks. It is intended that any function which is found to be required by
multiple instrumentation tasks but which does not fit in any other package should be included
in Git.

It is recommend (but not required) that you make use of this package. The routines are docu-
mented in the appendix of this document.

9.1 GitActivate

The GitActivate() routine is is the core of the package. It is written using the object oriented
techniques described in [1] and is used as part of an example in that document. The parameters
specified above have appropriate defaults while the actions do the minimum possible to obey
the standard.

In addition to the above actions, Git supports the UMONITOR action using the Umon
routines specified in [3]. This allows the task to be run from the UDISPLAY task described
in [6]. Also supported under VMS systems is the DEBUG action. When invoked, this action
will activate the VMS debugger.

It is not necessary to use GitActivate() to make use of the rest of the routines in this package,
although some required the Sdp parameter system to be enabled.

9.2 GitArg routines

The various routines starting with GitArg provide a wrap around for common command line
argument handling. The routines available are

GitArgGetD() Gets a double floating point argument value with checking against a range.
GitArgGetI() Gets an integer argument value with checking against a range.

GitArgGetL() Gets a logical argument value with user supplied strings for true and false
strings. For example, you can specify that “OPEN’ and “CLOSE” are to be considered
true and false.

GitArgGetS() Gets a string argument with checking against acceptable values.



AAO/GIT_SPEC_9 11

GitArgGetStruct() Returns the id of an Sds structure. The structure may have been provided
directly as the argument to the action or by supplying the name of a file containing the
structure.

These routines have a range of options, allowing for most required situations in getting argu-
ments. The user supplies the SDS id of an argument structure (usually obtained using Dits-
GetArgument()) The routines first try to find the argument by name and if one of that name
does not exist, it tries for an argument in the specified position. This allows for both general
user interfaces (which don’t know about argument names) and specific ones which will know the
appropriate argument name.

The routine GitArgNamePos() is used by the above routine to get the id of an argument by
name or position.

9.3 Parameters/Environment routines

The GitGetEnvS() routine returns the value of a logical name (VMS) or environment variable
(UNIX/VxWorks). The routine GitParEnvGetS() first tries to find a value in a parameter. If
it fails or returns a bad values, then it translates the specified logical name (VMS) or environment
variable (UNIX/VxWorks). If this fails, the specified default is returned.

GitSimulation() sets the task simulation level in the required way.

9.4 GitPathGet routines
GitPathGetlInit() and GitPathGetComp() are used as a pair. They simplify the getting of
a path.

This is how you would get a couple of paths using DitsGetPath(). This example is taken from
the control task example in [1].

It is a bit complex, but, it is the most efficient and flexible way of doing things.

static void CTestFindPaths(StatusType *status)

{
if (*status != STATUS__0K) return;
/*
* Convert the timeout into a value appropriate for Dits.
*/
if (TIMEQUT > 0)
DitsDeltaTime (TIMEOUT,O,&timeout) ;
/*
* Clear the TaskDied status
*/

TaskDiedStatus = STATUS__OK;
/*



AAO/GIT_SPEC_9

* Initiate getting the paths to the TEA and COFFEE tasks.
*/
DitsGetPath("TEA" ,MESSAGEBYTES,MAXMESSAGES,REPLYBYTES ,MAXREPLIES,
&teaPath,&teaTransid,status);
DitsGetPath("COFFEE" ,MESSAGEBYTES,MAXMESSAGES,REPLYBYTES,MAXREPLIES,
&coffeePath,&coffeeTransid,status);

if (xstatus == STATUS__0OK)

{
/*
* We already have both paths, just go to the next stage
*/
if ((teaTransid == 0)&&(coffeeTransid == 0))
{
DitsPutHandler (CTestStartActions,status);
DitsPutRequest (DITS_REQ_STAGE,status) ;
}
/*
Otherwise, wait for the message with timeout if necessary. Use
* CTestPathFound to respond.
*/
else
{
if (TIMEOUT > 0)
DitsPutDelay(&timeout,status);
DitsPutHandler (CTestPathFound,status);
DitsPutRequest (DITS_REQ_MESSAGE, status) ;
}
X
else
ErsRep(0,status,"Error trying to get paths to TEA and COFFEE");
}
/*

* We get here when a path is found or if a timeout getting the paths occurs
*/
static void CTestPathFound(StatusType *status)

{
DitsReasonType reason;
StatusType reasonstat;
DitsGetReason(&reason,&reasonstat,status);
/*
* If the reason is a reschedule message, then we have timed out. Exit the
* action, but not the task.
*/

if (reason == DITS_REA_RESCHED)



AAO/GIT_SPEC_9

*status = DITS__APP_TIMEQUT;
ErsRep(0,status,"Timeout trying to get paths");

/*
* If its a path not found message, then report a message and exit the
* action.
*/
else if (reason !'= DITS_REA_PATHFOUND)
{
char name[DITS_C_NAMELEN] ;
DitsTransIdType transid;
DitsPathType path;
DitsGetEntInfo(sizeof (name) ,name,&path,&transid,&reason,
&reasonstat,status);
*status = reasonstat;
ErsRep(0,status,"Failed to get path to task %s: %s",name,
DitsErrorText (*status));

/*
* Successful find of a path. Check which one.
*/
else
{
char name [DITS_C_NAMELEN] ;
DitsTransIdType transid;
DitsPathType path;
DitsGetEntInfo(sizeof (name) ,name,&path,&transid,&reason,
&reasonstat,status);
if (path == teaPath)
teaTransid = O;
else
coffeeTransid = O;
/*
If necessary, wait for the next one, otherwise stage to the
next part (CTestStartActions)

if ((teaTransid == 0)&&(coffeeTransid == 0))
{
DitsPutHandler (CTestStartActions,status);
DitsPutRequest (DITS_REQ_STAGE, status);
}
else
{
if (TIMEOUT > 0)
DitsPutDelay(&timeout,status);

13



AAO/GIT_SPEC_9 14

DitsPutRequest (DITS_REQ_MESSAGE,status);

This is how the same code could be rewritten using GitPathGetInit() and GitPathGet-
Comp(). The problems are that you cannot have more then one GetPath’s operation outstand-
ing at the same time, you can’t use this technique in user interface code and you have a couple
of extra action stages to get the job done. But it’s a lot simpler.

static void CTestFindPaths(StatusType *status)
{
if (*status != STATUS__O0K) return;
/%
* Initiate getting the path to the tea task. CTestTeaFound will
* be invoked when we have a result.
*/
GitPathGetInit ("TEA" ,MESSAGEBYTES,MAXMESSAGES,REPLYBYTES,MAXREPLIES,
TIMEOUT,CTestTeaFound,O,status) ;

}
static void CTestTeaFound(StatusType *status)
{
if (xstatus != STATUS__OK) return;
/*
* Complete the path get operation and get the details.
*/
GitPathGetComp (&teaPath,0,status);
if (xstatus != STATUS__OK)
{
ErsRep(0,status,"Failed to get path to task TEA: Ys",
DitsErrorText (*status));
}
else
/*

* Initiate getting the path to the coffee task. CTestCoffeeFound will
* be invoked when we have a result.

*/
GitPathGetInit ("COFFEE" ,MESSAGEBYTES,MAXMESSAGES,REPLYBYTES,
MAXREPLIES,TIMEOUT,CTestCoffeeFound,0,status);
}
static void CTestCoffeeFound(StatusType *status)
{

if (*status != STATUS__OK) return;



AAO/GIT_SPEC_9 15

/*
* Complete the path get operation and get the details.
*/
GitPathGetComp (&coffeePath,0,status);
if (*status != STATUS__OK)
{
ErsRep(0,status,"Failed to get path to task COFFEE: Ys",
DitsErrorText (*status));
X
else
{
/*
* Stage to the routine that does the real work.
*/
DitsPutHandler (CTestStartActions,status);
DitsPutRequest (DITS_REQ_STAGE,status);
+
3

9.5 GitTpi routines

Modules written using an object oriented style will normally require internal storage to maintain
state information. This is no problem on VMS an UNIX machines, where each DRAMA task
runs in its own address space. But, under some operating systems, e.g. VxWorks, all tasks
run in the same address space. Here, static and extern variables are common to all tasks.
The DitsPutUserData() and DitsGetUserData() (see [3]) routines provide a way around
this problem. Unfortunately, if used in a simple way, a task must know about all the packages
using these routines. It would be nice if all packages could have transparent access to this
storage area. The GitTpi routines provide this. The main module of your program should
call GitTpilnit(). Then, each package can call GitTpiPut() to store data for which it would
otherwise call DitsPutUserData(). The packages can then call GitTpiGet() to retrieve
the data. For this to work, only the GitTpi routines should call DitsPutUserData() and
DitsGetUserData().

9.6 Parameter Monitor Support

Dits provides support for one task to monitor the values of parameters in other tasks. As the
low level interface to parameter monitoring provided is a bit complex, Git provides a simpler
interface.

GitMonitorMessage() can be used to initiate monitor messages of any type. It wraps up the
process of creating arguments structures from lists of parameters.

The routines GitMonitorStart() and GitMonitorForward() are used to initiate monitoring
transactions in which most of the work is done by the Git package. You need only supply
callback routines. The former routine is very usefull if you want parameters in one task to
reflect the values of parameters in another task.



AAO/GIT_SPEC_9 16

9.6.1 Procedure Types

Various procedures are passed the GitMonitorStart() and GitMonitorForward() routines.
In order to supply routines of appropriate types, you need to know how such routines are defined.
This section gives the C typedef of all the routine types.

e typedef void (*GitMonitorStartedType) (
int id, /* (>) Id of the monitor tramsaction */
void * client_data,
StatusType *status);

e typedef void (*GitMonitorChangedType) (

char * name, /* (>) Name of parameter x/
SdsCodeType type, /* (>) Sds type of parameter */
void * value, /* (>) Value of parameter x/

void * client_data,
StatusType *status) ;

Value is the address of any item of the type indicated by the Sds code. Value is not valid
for Array or Structured items. In these cases it is set too zero. A special case is character
arrays, which are treated as strings. In this case, the type will be ARG_STRING instead
of SDS_CHAR.

e typedef void (*GitMonitorResponseType) (
void * client_data,
StatusType *status);

References

[1] Tony Farrell, AAO. 05-Aug-1993, Guide to writing Drama tasks. Anglo-Australian Observa-
tory DRAMA Software Document 3.

[2] Tony Farrell, AAO. 01-Apr-1993, DRAMA Error reporting System. Anglo-Australian Ob-
servatory DRAMA Software Document 4.

[3] Tony Farrell, AAO. 05-Jan-1994, Distributed Instrumentation Tasking System. Anglo-
Australian Observatory DRAMA Software Document 5.

[4] Tony Farrell, AAO. 18-Feb-1992, A portable Message Code System. Anglo-Australian Ob-
servatory DRAMA Software Document 6.

[5] Jeremy Bailey , AAO. 9-Sep-1992, Self-defining Data System. Anglo-Australian Observatory.

[6] Tony Farrell, AAO. 12-Feb-1992, UDISPLAY and the UMON routines. Draft Anglo-
Australian Observatory Software Document.



AAO/GIT_SPEC_9

A Git Routines

This appendix describes the routines provided by the Git package.

17



AAO/GIT_SPEC_9

A.1 GitActivate — Activate the Generic instrument task action handlers.

Function: Activate the Generic

Description: Default actions handlers for all the standard Generic instrument task actions
are put using DitsPutActionHandlers and the standard parameters are created using Sd-

pCreate.

instrument task action handlers.

Handlers are added for the following actions

INITTIALISE
CTRLC
DUMP_LOG
EXIT
LOG_LEVEL
POLL
POLL_PARAMETER
RESET
SIMULATE_LEVEL
UPDATE_NBD
UMONITOR

Simply set simulation and output a message,
Does nothing.

Currently, does nothing.

Causes task to exit.

Currently does nothing

Outputs a message and waits for a message.
Currently does nothing

Output a message.

Sets the simulation level.

Does nothing.

Calls the DmonCommand routine.

The following parameters are created -

LOG_LEVEL
SIMULATE_LEVEL
TIME_BASE
ENQ_DEV_TYPE
ENQ_DEV_DESCR
ENQ_VER_NUM
ENQ_VER_DATE

Default value “NONE”

No default value

Default value 1.0

Default value “IDT”

Default value “Generic Instrument task”
Default value = git version number
Default value = git version date

ENQ_DEV_NUMTIEM | Default value 0.

Language: C
Call:

(Void) = GitActivate (parsysid, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) parsysid (SdsIdType) The parameter system id returned by a call to SdpInit

(') status (StatusType *) Modified status.

Include files: Git.h

External functions used:

DitsPutActionHandlers
SdpCreate
MessPutFacility

Dits Put some action handlers.
Dits-Sdp | Create parameters.
Mess Add a new message facility.




AAO/GIT_SPEC_9 19

External values used: none

Prior requirements: Ditslnit and Sdplnit should have been called. Should not be called from
a Dits action handler routine.

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 20

A.2 GitArgGetD — Gets a double floating point argument value with check-
ing against a range.

Function: Gets a double floating point argument value with checking against a range.
Description: Assumes “id” is an Sds Structure item containing the required argument and

“name” if the name of the argument.

If “range” is non-zero, it is an array with two entries - the lower and upper limits of the
allowable range of actValue.

If there is any error in getting the value, including its value not being in range, the actual
value is set to that specified by “defVal” and status will be reset to 0K, (see flags arguments
to change the effect on status).

Language: C

Call:
(void) = GitArgGetD (id, name, position, range, defVal, flags, actValue, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) id (SdsIdType) Id of the argument system.
(>) name (Char *) Name of the argument to get

(>) position (int) The position of the argument. This is used if “name” is a null pointer,
an empty string or if we can’t find an SDS structure item of that name.

(>) range (Double []) If non-zero, array of two values, the lower and upper limit for
value.

(>) defVal (Double) The Default value. Note, this is not validated against the range.
(>) flags (Int ) A bit-mask of flags. Possible values are

GIT_M_ARG_KEEPERR If we use the default value, return the error
which caused it to be used.
GIT_M_ARG_KEEPVALERR | Only retain the error if we found the item (and
its value was in error). If we did not find the
item, then return status ok and the default.

(<) actValue (Double *) The actual value is written here.

(1) status (StatusType *) Modified status. If we have an error and GIT_M_ARG_KEEP-
ERR is true then a message is reported using ErsRep and status is set. In addition to
error codes from the underlying Arg and Sds routines, one of the following may be
returned.



AAO/GIT_SPEC_9

GIT__NOARG The argument id is zero or no item was found.
Will not be returned if GIT_M_ARG_KEEPVALERR
flag is set, in that case, just return the default
with status ok.

GIT__ARGLTMIN | Argument value less than range[0].
GIT__ARGGTMAX | Argument value greater than range[l].

Include files: Git.h

External functions used:

SdsFreeld Sds | Free an Sds id

GitArgNamePos | Git | Get an argument Id by name or position
ArgCvt Arg | Convert an id to a specified type.
ErsRep Ers | Report an error.

ErsPush Ers | Increase error context

ErsPop Ers | Decreate error context

ErsAnnul Ers | Annul error messages

External values used: none
Prior requirements: As above.

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 22

A.3 GitArgGetl — Gets an integer argument value with checking against a
range.

Function: Gets an integer argument value with checking against a range.
Description: Assumes “id” is an Sds Structure item containing the required argument and
“name” if the name of the argument.

If “range” is non-zero, it is an array with two entries - the lower and upper limits of the
allowable range of actValue.

If there is any error in getting the value, including its value not being in range, the actual
value is set to that specified by “defVal” and status will be reset to OK. (see flags arguments
to change the effect on status).

Language: C

Call:
(void) = GitArgGetl (id, name, position, range, defVal, flags, actValue, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) id (SdsIdType) Id of the argument system.
(>) name (Char *) Name of the argument to get

(>) position (int) The position of the argument. This is used if “name” is a null pointer,
an empty string or if we can’t find an SDS structure item of that name.

(>) range (Long Int []) If non-null, array of two values, the lower and upper limit for
value.

(>) defVal (Long Int) The Default value. Note, this is NOT validated against the range.
(>) flags (Int ) A bit-mask of flags. Possible values are

GIT_M_ARG_KEEPERR If we use the default value, return the error
which caused it to be used.
GIT_M_ARG_KEEPVALERR | Only retain the error if we found the item (and
its value was in error). If we did not find the
item, then return status ok and the default.

(<) actValue (Long int *) The actual value is written here.

(') status (StatusType *) Modified status. If we have an error and GIT_M_ARG_KEEP-
ERR is true then a message is reported using ErsRep and status is set. In addition to
error codes from the underlying Arg and Sds routines, one of the following may be
returned



AAO/GIT_SPEC_9

GIT__NOARG

The argument id is zero or no item was found.
Will not be returned if GIT_M_ARG_KEEPVALERR
flag is set, in that case, just return the default
with status ok.

GIT__ARGLTMIN
GIT__ARGGTMAX

Argument value less than range|0].
Argument value greater than range[l].

Include files: Git.h

External functions used:

SdsFreeld Sds | Free an sds id

GitArgNamePos | Git | Get an argument Id by name or position
ArgCvt Arg | Convert an id to a specified type.
ErsRep Ers | Report an error.

ErsPush Ers | Increase error context

ErsPop FErs | Decreate error context

ErsAnnul Ers | Annul error messages

External values used: none
Prior requirements: As above

Support: Tony Farrell, AAQ

23




AAO/GIT_SPEC_9 24

A.4 GitArgGetL — Gets a logical argument value.

Function: Gets a logical argument value.
Description: Assumes “id” is an Sds Structure item containing the required argument and
“name” if the name of the argument.

This routine fetches the value of a logical argument. There are several possibilties.

1. The argument value can be converted to an integer and if non zero, it is considered
true, otherwise false.

2. The argument value can be converted to an integer and the LSB inidicates if the value
is true or false.

3. An array of strings is provided. The array contains pairs of TRUE/FALSE strings. For
example, “TRUE” and “FALSE” themselves or “OPEN” and “SHUT” etc.

The value is first treated as an integer, the selection of technique 1 or 2 is based on a flag.
If this conversion fails and the strings argument is provided, then technique three is tried.

If there is any error in getting the value, the actual value is set to that specified by “defVal”
and status will be reset to OK, (see flags arguments to changes the effect on status).

Language: C

Call:
(void) = GitArgGetL (id, name, position, strings, defVal, flags, actValue, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) id (SdsIdType) Id of the argument system.
(>) name (Char *) Name of the argument to get

(>) position (int) The position of the argument. This is used if “name” is a null pointer,
an empty string or if we can’t find an SDS structure item of that name.

(>) strings (GitLogStrType []) If nonzero, then this is an array describing the possible
values for TRUE and FALSE. “strings[n].true” is a pointer to a character string value
representing TRUE, while “strings|n].false” is a pointer character string represeting
FALSE. The maximum length is GIT_ARG_LMAX characters (20).

An entry containing two null pointers indicates the end of the array.
If zero, the argument should be able to be converted to an integer value.

(>) defVal (Int) The Default value.
(>) flags (Int ) A bit-mask of flags. Possible values are



AAO/GIT_SPEC_9

GIT_M_ARG_UPPER
GIT_M_ARG_LOWER
GIT_M_ARG_LASTBIT
GIT_M_ARG_KEEPERR

GIT_M_ARG_ABBREV

GIT_M_ARG_KEEPVALERR

Convert value to upper case.

Convert value to lower case.

If set, we only consider the LSB of integer values.
If not set, only a value of 0 is false.

If we use the default value, return the error
which caused it to be tasken.

Allow abbreviations. The minimum abbrevi-
ation is 2 characters. The first value in the
“strings” array which is correct to length of the
supplied value is used.

Only retain the error if we found the item (and
its value was in error). If we did not find the
item, then return status ok and the default.

25

(<) actValue (int *) The actual value is written here. Set to 1 for true and 0 for false.

(') status (StatusType *) Modified status. If we have an error and GIT_M_ARG_KEEP-
ERR is true then a message is reported using ErsRep and status is set. In addition to
error codes from the underlying Arg and Sds routines, one of the following may be

returned

GIT__NOARG

GIT__ARGVAL

The argument id is zero or no item was found.
Will not be returned if GIT_M_ARG_KEEPVALERR
flag is set, in that case, just return the default
with status ok.

Invalid argument value, not one of those speci-
fied in the strings array.

Include files: Git.h

External functions used:

SdsFreeld
GitArgNamePos
ArgCvt
ErsRep
ErsPush
ErsPop
ErsAnnul
islower
isupper
toupper
tolower
stremp
strncpy

Sds | Free an sds id

Git Get an argument Id by name or position
Arg | Convert an id to a specified type.

Ers Report an error message

Ers Increase error context

Ers Decreate error context

Ers | Annul error messages

CRTL | Determines if a character is lower case.
CRTL | Determines if a character is upper case.
CRTL | Convert a character to upper case.
CRTL | Convert a character to lower case.
CRTL | Compare one string to anoterh

CRTL | Copy one string to another.




AAO/GIT_SPEC_9

External values used: none
Prior requirements: As above

Support: Tony Farrell, AAO

26




AAO/GIT_SPEC_9 27

A.5 GitArgGetS — Gets a string argument value with checking against ac-
ceptable values.

Function: Gets a string argument value with checking against acceptable values.

Description: Assumes “id” is an Sds Structure item containing the required argument and
“name” if the name of the argument.

If “values” is non-zero, then it is an array of acceptables values. If the actual value is not
in this array, then status is set to GIT__ARGVAL.

If “defVal” is non-zero, then if there is any error in getting the value, including its value
not being acceptable, the actual value is it to that specified by “defVal” and status will
be reset to OK, (see flags arguments to change the effect on status).

Language: C

Call:
(void) = GitArgGetS (id, name, position, values, defVal, flags, actValLen, actValue, index,
status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) id (SdsIdType) Id of the argument system.
(>) name (Char *) Name of the argument to get

(>) position (int) The position of the argument. This is used if “name” is a null pointer,
an empty string or if we can’t find an SDS structure item of that name.

(>) values (Char *[]) If non-null, array of pointers to the possible values. Terminate
with 0.

(>) defVal (Char ) If non-null, the default value. Note, this value is NOT validated
against the values array.

(>) flags (Int ) A bit-mask of flags. Possible values are

GIT_M_ARG_UPPER Convert value to upper case.
GIT_M_ARG_LOWER Convert value to lower case.
GIT_M_ARG_KEEPERR If we use the default value, return the error

which caused it to be taken. (If we don’t have a
default value, then we return the error).
GIT_M_ARG_ABBREV Allow abbreviations. The minimum abbrevia-
tion is 2 characters. The first value in the “val-
ues” array which is correct to length of the sup-
plied value is used. The full length value is copy-
ied from “values” to actValue.
GIT_M_ARG_KEEPVALERR | Only retain the error if we found the item (and
its value was in error). If we did not find the
item, then return status ok and the default.




AAO/GIT_SPEC_9 28

(>) actValLen (Int) Length of actValue
(<) actValue (Char *) The actual value is written here.

(<) index (Int *) If non-null - if we found a value in the values array, this is the index
to that value. Otherwise, it is set to -1.

(') status (StatusType *) Modified status. If we have an error and GIT_M_ARG_KEEP-
ERR is true then a message is reported using ErsRep and status is set. In addition to
error codes from the underlying Arg and Sds routines, one of the following may be
returned

GIT__NOARG | The argument id is zero or no item was found.
Will not be returned if GIT_M_ARG_KEEPVALERR
flag is set, in that case, just return the default
with status ok.

GIT__ARGVAL | Invalid argument value, not one of those speci-
fied in the values array.

Include files: Git.h

External functions used:

SdsFreeld Sds | Free and Sds Id.

ArgGetString | Arg | Get an argument value

ErsRep Ers Report an error.

ErsPush Ers Increase error context

ErsPop Ers Decreate error context

ErsAnnul Ers | Annul error messages

islower CRTL | Determines if a character is lower case.
isupper CRTL | Determines if a character is upper case.
toupper CRTL | Convert a character to upper case.
tolower CRTL | Convert a character to lower case.
stremp CRTL | Compare one string to anoterh
strncpy CRTL | Copy one string to another.

External values used: none
Prior requirements: As above

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 29

A.6 GitArgGetStruct — Gets a structure argument value.

Function: Gets a structure argument value.

Description: This routine returns the id of an Sds structure which may be specified either
directly as the argument to an action or as the name of an SDS file containing the structure.

If the argument system id is non-zero, points to an Sds structure and the structure name
is not “ArgStructure”, then the id of this structure is returned.

If the argument system id is non-zero and points to the an Sds item named “ArgStructure”,
the we try to find (by name or position), the requested item. If such an item is found and
it is a Sds structure, the id of the item is returned. Otherwise, we interpet the value of
the item an a filename and try to read the file. If the succeeds, then we return the id of
the structure read from the file use SdsRead.

If we still don’t have a value and defValue is non-zero, then it is treated as the name of a
file which we read using SdsRead. The resulting Sds id is returned.

If we read the value from a file, the name of the file is returned in actName. Otherwise,
the name of the structure is returned in actName.

Language: C

Call:
(void) = GitArgGetStruct (id, name, position, defVal, actNameLen, actName, actValue
status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) id (SdsIdType) Id of the argument system.

(>) name (Char *) Name of the argument to get

(>) position (int) The position of the argument. This is used if “name” is a null pointer,
an empty string or if we can’t find an SDS structure item of that name.

(>) defVal (Char ) If non-null, the default value. We try to read a file of this name.

(>) actNameLen (int ) Length of buffer pointed to by actName.

(<) actName (Char *) If we read a file, the name of the file is written here. Otherwise,
the name of the structure is written here.

(<) actValue (SdsIdType *) The actual value is written here.

(') status (StatusType *) Modified status. If we have an error and no default was
supplied, then a message is reported using ErsRep and status is set. In addition to

error codes from the underlying Arg and Sds routines, one of the following may be
returned

GIT__NOARG | The argument id is zero.

GIT__ARGVAL | The argument value is invalid in some way.
SDS__FOPEN | We tried to read a file but file. Note that in this
case actName will have the name of the file that
we tried to open.




AAO/GIT_SPEC_9

Include files: Git.h

External functions used:

ArgGetString
ErsRep
ErsPush
ErsPop
ErsAnnul
stremp
strncpy
SdsRead
SdsInfo

Arg
Ers
Ers
Ers
Ers
CRTL
CRTL
Sds
Sds

Get an argument value

Report an error.

Increase error context
Decreate error context

Annul error messages
Compare one string to another
Copy one string to another.
Read an sds item from a file
Obtain details of an Sds item.

External values used: none

Prior requirements: As above

Support: Tony Farrell, AAQ

30




AAO/GIT_SPEC_9 31

A.7 GitArgNamePos — Return the Id of an argument given its name and
position.

Function: Return the Id of an argument given its name and position.

Description: Returns an Sds Id of the argument of the given name within the specified argu-
ment system. If there is no argument of that name, or the name is specified as null, return
the argument in the specified position.

DEPRECATED: Prefer GitArgNamePos2().
Language: C

Call:
(void) = GitArgNamePos (id, name, position, argid , status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) id (SdsIdType) Id of the argument system.

(>) name (Char *) Name of the argument to get

(>) position (Int) Position of argument, first argument is 1. This is used if “name” is a
null pointer, an empty string or if we can’t find an SDS structure item of that name.

(<) argid (SdsIdType *) Id of argument.
(') status (StatusType *) Modified status.

Include files: Git.h

External functions used:

SdsFind | SDS | Find an item by name
SdsIndex | Sds | Find an item by position

External values used: none
Prior requirements:

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 32

A.8 GitEnvGetS — Get a value of a logical name/environment variable

Function: Get a value of a logical name/environment variable

Description: Under VMS, translate the name of the given logical name/Cli symbol. Under
UNIX/VxWorks, return the value of the given environment variable. Under VxWorks
version 5.0 and before, return false.

This routine is different for each operation system. Under VxWorks 5.0 and before, it
always returns false, as there is no equivalent to logical names/environment variables in
that environment.

Language: C

Call:
(int) = GitEnvGetS (Name, valLen, Val, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) eName (Char *) Logical name(VMS)/Environment Variable name (UNIX).
(>) valLen (int ) The length allowed for the value

(<) val (Char x) The actual value.

(') status (StatusType *) Modified status.

Include files: Git.h
Function value: Returns true for a successfull translation. False otherwise.

External functions used:

H DitsGetSymbol ‘ DITS ‘ Get the value of an environement variable. H

External values used: none
Prior requirements: none

Support: Tony Farrell, AAD




AAO/GIT_SPEC_9 33

A.9 GitMonitorForward — Setup and run a Monitor Forward operation.

Function: Setup and run a Monitor Forward operation.

Description: A monitor start message is sent to the task whose path is specified, with the
optional list of parameter supplied. Responses are handled and user supplied routines
invoked when necessary.

This routine is intended to hide the details of parameter monitoring. It will set its’ own
Obey and Kick handlers to handle the results. It also uses DitsPutActData to store
information.

On return from this routine, the caller should call DitsPutRequest with a request of DIT-
S_REQ_MESSAGE and return to the fixed part.

User routines supplied below will be invoked when corresponding messages arrive. If the
user does not supply a Completed routine, then the action which invoked this routine will
exit when the monitor message terminates.

Language: C

Call:
(void) = GitMonitorForward (path, task, action, Started, Completed, Unexpected, client_data,
count, status, [parameters,|...]])

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) path (DitsPathType) Path to the task in which parameters are to be monitored.
(>) task (char *) Task to which to send the monitor message.
(>) action (char *) Name of the action in that task to obey.

(>) Started (GitMonitorStartedType) Invoked when a monitor started message is
received. Optional. If not required, specify 0. On return from this routine, a request
of DITS_REQ_MESSAGE is put.

(>) Completed (GitMonitorResponseType) Invoked when monitoring completes for
whatever reason. You can use the normal Dits calls to get more information. No re-
quest is put on return from this routine so the default is for the action to complete
when monitoring completes. The status returned by this routine will be the com-
pletion status of the action. DitsPutActData() is used to restore the original value
of ActData before this routine is invoked. If this routine is not supplied then the
action which invokes this routine will complete when monitoring completes and the
completion status of the monitoring will be the completion status of the action.

(>) Unexpected (GitMonitorResponseType) Invoked for unexpected messages re-
ceived while monitoring. These would normally be as the result of transactions
started by the user. Normal Dits routines can be used to get details. If not sup-
plied, the a message is output. A request of DITS_REQ_MESSAGE is put on return from
this routine.

(>) client_data (void *) Client data available to the handler routine.

(>) count (int) Number of parameters supplied



AAO/GIT_SPEC_9

(1) status (StatusType *) Modified status.

(>) parameters (char *) A list of parameters to monitor.

Include files: Git.h

External functions used:

DitsInitiateMessage | Dits | Send a message to a task.
DitsPutObeyHandler | Dits | Put an obey message handler
DitsPutKickHandler | Dits | Put a Kick message handler
DitsPutActData Dits | Save data.

sprintf CRTL | Formated print into a string.

ArgNew Arg | Create an argument structure.
ArgPutString Arg | Put a string item into an argument structure.
DitsNameSet Dits | Set a name item

External values used: none

Prior requirements: Should only be called from a Dits application action routine.

Support: Tony Farrell, AAQ

34




AAO/GIT_SPEC_9 35

A.10 GitMonitorMessage — Initiate a Monitor Message.

Function: Initiate a Monitor Message.

Description: This routine calls DitsInitiateMessage to send a monitor message of type with
the specified list of parameters. This is a simpilied interface to DitsInitiateMessage for
monitor message. It is up to the caller to handle the results.

Language: C

Call:
(void) = GitMonitorMessage (id, path, type, count, transid, status, [parameters,|...]])

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) id (int) Monitor id returned by a Monitor Started message. Ignored for START and
FORWARD type messages.
(>) path (DitsPathType) Path to the task in which parameters are being monitored.

(>) type (GitMonitorMsgType) One of GIT_MON_START, GIT_MON_FORWARD, GIT_MON_ADD,
GIT_MON_DELETE or GIT_MON_CANCEL.

(>) count (int) Number of parameters supplied
(<) transid (DitsTransIdType) Id of the resulting transaction.
(') status (StatusType *) Modified status.

(>) parameters (char *) A list of parameters to monitor. For a FORWARD type message,
the first two paramters should be task name and action name to which parameter
change messages are to be forwarded.

Include files: Git.h

External functions used:

ArgNew Arg | Create an argument structure.

ArgPuti Arg | Put an integer item into an argument structure.
ArgPutString Arg | Put a string item into an argument structure.
DitsNameSet Dits | Set a name item

DitsInitiateMessage | Dits | Send a message to a task.

sprintf CRTL | Formated print into a string.

External values used: none

Prior requirements: Should only be called from a Dits application routine or when context
is DITS_CTX_UFACE.

Support: Tony Farrell, AAD




AAO/GIT_SPEC_9 36

A.11 GitMonitorStart — Setup and run a monitor transaction.

Function: Setup and run a monitor transaction.

Description: A monitor start message is sent to the task whose path is specified, with the
optional list of parameter supplied. Responses are handled and user supplied routines
invoked when necessary.

This routine is intended to hide the details of parameter monitoring. It will set its own
Obey and Kick handlers to handle the results. It also uses DitsPutActData to store
information.

On return from this routine, the caller should call DitsPutRequest with a request of DIT-
S_REQ_MESSAGE and return to the fixed part.

User routines supplied below will be invoked when corresponding messages arrive. If the
user does not supply a Completed routine, then the action which invoked this routine will
exit when the monitor message terminates.

Language: C

Call:
(void) = GitMonitorStart (path, Started, Changed, Completed, Unexpected, client_data,
count, status, [parameters,|...]])

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) path (DitsPathType) Path to the task in which parameters are to be monitored.

(>) Started (GitMonitorStartedType) Invoked when a monitor started message is
received. Optional. If not required, specify 0. On return from this routine, a request
of DITS_REQ_MESSAGE is put.

(>) Changed (GitMonitorChangedType) Invoked when a parameter changed moni-
tor message is received. If the parameter whose value has changed is a non-structured,
non-array item or a character string, its name, value and Sds type will be supplied to
this routine. For arrays or structures, just the name and type (value set to 0). You
can use

() DitsGetArgument () to get the actual sds item id. On return from this routine, a
request of DITS_REQ_MESSAGE is put.

(>) Completed (GitMonitorResponseType) Invoked when monitoring completes for
whatever reason. You can use the normal Dits calls to get more information. No re-
quest is put on return from this routine so the default is for the action to complete
when monitoring completes. The status returned by this routine will be the com-
pletion status of the action. DitsPutActData() is used to restore the original value
of ActData before this routine is invoked. If this routine is not supplied then the
action which invokes this routine will complete when monitoring completes and the
completion status of the monitoring will be the completion status of the action.

(>) Unexpected (GitMonitorResponseType) Invoked for unexpected messages re-
ceived while monitoring. These would normally be as the result of transactions



AAO/GIT_SPEC_9 37

started by the user. Normal Dits routines can be used to get details. If not sup-

plied, the a message is output. A request of DITS_REQ_MESSAGE is put on return from
this routine.

(>) client_data (void *) Client data available to the handler routine.
(>) count (int) Number of parameters supplied
(') status (StatusType *) Modified status.

(>) parameters (char *) A list of parameters to monitor.

Include files: Git.h

External functions used:

ArgNew Arg | Create an argument structure.
ArgPutString Arg | Put a string item into an argument structure.
DitsNameSet Dits | Set a name item

DitsInitiateMessage | Dits | Send a message to a task.
DitsPutObeyHandler | Dits | Put an obey message handler
DitsPutKickHandler | Dits | Put a Kick message handler

DitsPutActData Dits | Save ActData item.
DitsGetActData Dits | Get ActData item.
sprintf CRTL | Formated print into a string.

External values used: none

Prior requirements: Should only be called from a Dits application action routine.

Support: Tony Farrell, AAD




AAO/GIT_SPEC_9 38

A.12 GitMonitorStartF — Setup and run a monitor transaction. Version
with flags specifiable.

Function: Setup and run a monitor transaction. Version with flags specifiable.

Description: A monitor start message is sent to the task whose path is specified, with the
optional list of parameter supplied. Responses are handled and user supplied routines
invoked when necessary.

This routine is intended to hide the details of parameter monitoring. It will set its own
Obey and Kick handlers to handle the results. It also uses DitsPutActData to store
information.

On return from this routine, the caller should call DitsPutRequest with a request of DIT-
S_REQ_MESSAGE and return to the fixed part.

User routines supplied below will be invoked when corresponding messages arrive. If the
user does not supply a Completed routine, then the action which invoked this routine will
exit when the monitor message terminates.

This version of GitMonitorStart() allows you to specify the message flags.

Language: C

Call:
(void) = GitMonitorStartF (path, Flags, Started, Changed, Completed, Unexpected, client _data,
count, status, [parameters,]...]])

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) path (DitsPathType) Path to the task in which parameters are to be monitored.

(>) Flags (int) Flags to the monitor messages. Set DITS_M_SENDCUR if you want the
current value of the parameter sent immediately. Set DITS_M_REP_MON_LOSS to cause
the reporting of monitor messages which are lost due to waiting for buffer empty
notification messages to arrive. This should be consider if the loss of monitor messages
is significant to your application. In general, it is not as the system ensures the last
parameter update gets though.

(>) Started (GitMonitorStartedType) Invoked when a monitor started message is
received. Optional. If not required, specify 0. On return from this routine, a request
of DITS_REQ_MESSAGE is put.

(>) Changed (GitMonitorChangedType) Invoked when a parameter changed moni-
tor message is received. If the parameter whose value has changed is a non-structured,
non-array item or a character string, its name, value and Sds type will be supplied to
this routine. For arrays or structures, just the name and type (value set to 0). You
can use

() DitsGetArgument () to get the actual sds item id. On return from this routine, a
request of DITS_REQ_MESSAGE is put.

(>) Completed (GitMonitorResponseType) Invoked when monitoring completes for
whatever reason. You can use the normal Dits calls to get more information. No re-
quest is put on return from this routine so the default is for the action to complete



AAO/GIT_SPEC_9 39

when monitoring completes. The status returned by this routine will be the com-
pletion status of the action. DitsPutActData() is used to restore the original value
of ActData before this routine is invoked. If this routine is not supplied then the
action which invokes this routine will complete when monitoring completes and the
completion status of the monitoring will be the completion status of the action.

(>) Unexpected (GitMonitorResponseType) Invoked for unexpected messages re-
ceived while monitoring. These would normally be as the result of transactions
started by the user. Normal Dits routines can be used to get details. If not sup-
plied, the a message is output. A request of DITS_REQ_MESSAGE is put on return from
this routine.

(>) client_data (void *) Client data available to the handler routine.
(>) count (int) Number of parameters supplied
(1) status (StatusType *) Modified status.

(>) parameters (char *) A list of parameters to monitor.
Include files: Git.h

External functions used:

ArgNew Arg | Create an argument structure.
ArgPutString Arg | Put a string item into an argument structure.
DitsNameSet Dits | Set a name item

DitsInitiateMessage | Dits | Send a message to a task.
DitsPutObeyHandler | Dits | Put an obey message handler
DitsPutKickHandler | Dits | Put a Kick message handler

DitsPutActData Dits | Save ActData item.
DitsGetActData Dits | Get ActData item.
sprintf CRTL | Formated print into a string.

External values used: none
Prior requirements: Should only be called from a Dits application action routine.

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 40

A.13 GitParEnvGetS — Get a value from a parameter or, failing that, the
environment.

Function: Get a value from a parameter or, failing that, the environment.

Description: Firstly, try and obtain a value for the parameter using the parameter system.
If this fails or returns the specified bad value, try translating the supplied logical name
(VMS) or environment variable(UNIX/VxWorks). IF this fails or returns the specified bad
value, return the specified default.

Note that prior to VxWorks 5.1, Vxworks did not support environement variables.
Language: C

Call:
(Void) = GitParEnvGetS (pName, eName, badVal, defVal, actValLen, actVal, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) pName (Char *) Parameter name (null terminated)

(>) eName (Char *) Logical name(VMS)/Environment Variable (UNIX/VxWorks). This
is used if the above parameter cannot be read or if it has the specified invalid value
(null terminated). If zero, then only the parameter is used.

(>) badVal (Char *) The bad value that causes the logical name of the default value to
be used

(>) defVal (Char *) Default value to be returned if no valid value can be obtained.
(>) actValLen (int ) The length allowed for the actual value

(<) actVal (Char *) The actual value.

(') status (StatusType *) Modified status.

Include files: Git.h

External functions used:

GitEnvGetS | Git | The the value of an environment variable/logical

name
stremp CRTL | Compare two strings
strncpy CRTL | Copy one string to another

SdpGetString | Sdp | Get the value of a parameter

External values used: none

Prior requirements: Must only be called as part of a Dits application routine. Assumes a
parameter system is enabled and ArgGetString can be used to get the parameter value,
given the parameter system id. (This is case if the task has called GitActivate)

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 41

A.14 GitPathGetComp — Complete the getting of a path.

Function: Complete the getting of a path.

Description: Should be called by the action routine specified by GitPathGetInit. This routine
returns the actual path and the status of the operation.
This value stored by DitsPutActData() is returned to its value before the call to Git-
PathGetInit().

Language: C

Call:
(void) = GitPathGetComp (path, client_data, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(<) path (DitsPathType ) If status is ok, the path to the task.

(<) client_data (void **) Client data supplied to GitPathGetlnit. If an address of zero
is supplied, nothing is returned.

(') status (StatusType *) Modified status. If status is ok, then is will be set to the
status of the GetPath operation. In addition to values from the underlying systems,
the following codes are possible

GIT__PATH_TIMEOUT The user’s timeout expired before the path was
found.
GIT__PATH_INV_ENTRY | Unexpected action entry reason.

Include files: Git.h

External functions used:

DitsGetActData | Dits | Get data assocaited with action
DitsPutActData | Dits | Store data assocaited with action
free CRTL | Deallocate memory

External values used: none

Prior requirements: Should only be called from an action routine specified to a corresponding
call to GitPathGetlnit().

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 42

A.15 GitPathGetInit — Initiate the getting of a path.

Function: Initiate the getting of a path.

Description: This routine is a wrap around for the DitsGetPath routine, simpilfying its use.

The application firsts calls this routine, specifing the relavent details for DitsGetPath and
a handler routine.

Your handler routine will be invoked when either the path is found or an error occurs. The
handler is invoked by calling DitsPutHandler() with its address and then calling DitsPu-
tRequest() with a request of DITS_REQ_STAGE. This ensures consistency in the interface.

The handler MUST then call DitsPathGetComp() to tidy up and retrieve details of the path.

This routine calls DitsPutHandler() and DitsPutRequest(). The calling action routine
should return immediately after calling this routine to await the response.

This routine uses the DitsPutActData() routine to store information. Any value that was
stored with DitsPutActData() before entry to this routine will be restored by GitPathGet-
Comp().

A Kick handler is enabled which will respond to kicks by canceling the GetPath operation
can causing the action to exit. If any other response is required, the user can enable his
own kick handler after the return from this routine. When such a kick handler is invoke, it
should call GitPathGetComp to tidy up, but note that the path and status returned may
not be valid.

Language: C

Call:
(void) = GitPathGetlnit (name, messageBytes, maxMessages, replyBytes, maxReplies ,
handler, client_data, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) name (char *) As per DitsGetPath().

(>) messageBytes (int) As per DitsGetPath().
(>) maxMessages (int) As per DitsGetPath().
(>) replyBytes (int) As per DitsGetPath().
(>) maxReplies (int) As per DitsGetPath().

(>) timeout (int) Timeout in seconds. (<= 0 no timeout). If we do not get the path in
the specified time, an error is returned.

(>) handler (DitsActionRoutineType) Called at completion of the get path opera-
tion a a Dits action routine.

(>) client_data (void *) Client data available to the handler routine.

(') status (StatusType *) Modified status.
Include files: Git.h

External functions used:



AAO/GIT_SPEC_9

DitsGetActData | Dits | Get data assocaited with action
DitsPutActData | Dits | Store data assocaited with action
DitsGetReason | Dits | Get action entry details.
DitsPutHandler | Dits | Put a new action handler
DitsPutRequest | Dits | Put a request.

DitsGetPath Dits | Initiate Getting of a path.
DitsDeltaTime Dits | Create a delta time value
DitsPutDelay Dits | Put an action timeout

malloc CRTL | Allocate memory

External values used: none

43

Prior requirements: Should only be called from a User action routine. Cannot be used with

in Uface context.

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 44

A.16 GitPutDelay — Set Action delay or timeout.

Function: Set Action delay or timeout.

Description: This routine is a simplfied interface to the common sequences DitsDeltaTime -
DitsPutDelay.

Language: C

Call:
(Void) = GitPutDelay (delay, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) delay (double) The delay before rescheduling.
(') status (StatusType *) Modified status.

Include files: Git.h

External functions used:

DitsDeltaTime | Dits | Put a delta time in Machine Format.
DitsPutDelta | Dits | Put an action delay.

External values used: none
Prior requirements: Should only be called from a Dits application action routine.

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 45

A.17 GitPutDelayPar — Set Action delay or timeout from a parameter
value.

Function: Set Action delay or timeout from a parameter value.

Description: This routine sets an action delay or timeout from the value of a specified pa-
rameter.

Language: C

Call:
(Void) = GitPutDelayPar (parameter, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) parameter (char *) The name of the parameter. The value of this parameter should
be able to be interperted as a floating point value. If the value is 0 or negative, no
delay will be set.

(') status (StatusType *) Modified status.
Include files: Git.h

External functions used:

SdpGetd Sdp | Get a parameter value
GitPutDelay | Git | Set an action delay

External values used: none

Prior requirements: Should only be called from a Dits application action routine in a task
which uses the Sdp parameter system.

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 46

A.18 GitSimulation — Set a tasks’ simulation level and timebase.

Function: Set a tasks’ simulation level and timebase.

Description: Examine the SIMULATE_LEVEL parameter. If it is undefined and the variable
“envName” is non-zero, then examine the Logical Name (VMS) or Environment Variable
(Unix/VxWorks) the name of which is specifed by the “EnvName” variable. If we still
don’t have a simulation level, then it defaults to “NONE”

If the result of this is that the simulation level is “NONE”, then this function returns false.

The “levels” argument determines the acceptable simulation levels. If a value is not ac-
ceptable, it is converted to “FULL”, which is always acceptable.

The resulting simulation level is put in the SIMULATE_LEVEL parameter and is used to set
the “simulation” argument. If the simulation is any other then “NONE” this function will
return true.

The timebase is always the value of the TIMEBASE parameter.
Language: C

Call:
(Int) = GitSimulation (exName, levels, simulation, timebase, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) envName (Char *) IF non-zero, then this is the address of the name of a Logical

Name (VMS) or Environment

() variable (Unix/VxWorks) which is used to determine the simulation level when the
parameter is undefined.

(>) levels (Int) A bit mask indicating the acceptable simulation levels. Any other level
is converted to FULL. The following are possible (Taken from GIT_SPEC) -

GIT_M_SIM_BASIC The level “BASIC” is allowed
GIT_M_SIM_COMMANDS | The level “COMMANDS” is allowed
GIT_M_SIM_STATUS The level “STATUS” is allowed

“FULL” and “NONE” are always allowed. If zero, then only “FULL” and “NONE” are allowed.
Set to GIT_M_SIM_ALLLEVELS to accept all levels

(<) simulation (GitSimulationType *) Indicates the resulting simulation level. One
of -

GIT_SIM_NONE Simulation set to NONE
GIT_SIM_BASIC Simulation set to BASIC
GIT_SIM_COMMANDS | Simulation set to COMMANDS
GIT_SIM_STATUS Simulation set to STATUS
GIT_SIM_FULL Simulation set to FULL




AAO/GIT_SPEC_9 a7

(<) timebase (Float *) The timebase. Only valid if simulation is not equal to GIT_SIM_NONE.
This is the value in the TIMEBASE parameter. A timebase of zero does not make sense,
so such a timebase is converted to 1.

(1) status (StatusType *) Modified status.

Function value: 0 if simulation is GIT_SIM_NONE, nonzero otherwise.
Include files: Git.h

External functions used:

GitParEnvGetS | Git | The the value of a parameter or environment
variable/logical name

stremp CRTL | Compare two strings
strepy CRTL | Copy one string to another
ArgGetf Arg | Get the value of an argument

SdpPutString Arg | Put the value of a parameter

External values used: none

Prior requirements: Must only be called as part of a Dits application routine. Assumes a
parameter system is enabled. (This is case if the task has called GitActivate)

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 48

A.19 GitTimer — An action routine used to implement an action timer.

Function: An action routine used to implement an action timer.

Description: The first action argument is a count of the number of times to run the timer.
Other arguments are used by the user supplied argument creation routines to create argu-
ments to pass to subsidiary action.

This routine first extracts the count. It then calls each of the user supplied argument
creation routines (one for each action to be invoked in a sequence. These routines must
extract any information they require from the remaining arguments and create an argument
structure to be passed to the action they are responsible for.

The action then gets the path to the relevant task and does the entire user requested
sequences of actions count times.

To configure this action, the user must supply the address a structure of type GitTimer-
Type as the “code” item when defining a DitsActionMapType which defines this action.
This structure has the following user defined elements

TaskName A character string giving the name of the task
to invoke the actions in. This can be any DRAMA
task including this task.

SeqCount An integer Count of actions in a sequence
SequenceDetails Defines details of a sequences. This is an array
of Count elements, each of type GitTimerDetail-
sType, as defined below.

Buffers An item of type GitPathInfoType which defines
the message buffer sizes to be passed to Dits-
GetPath.

GitTimerDetailsType has the following user de-
fine elements

ActionName The name of an action to invoke in the target
task.

ArgCreateRoutine | The address of a routine of type GitTimerAr-
gRoutineType, which is invoked with the Sds id
of the argument structure passed to this action.
It should examine this structure and return an
argument structure to be passed to the target

action.
ClientData Client data item for the routine.
Arg Argument to be passed, Set this to 0, it is filled

out by the call to the ArgCreateRoutine.

GitTimerArgRoutineType routines have the following definition



AAO/GIT_SPEC_9 49

typedef void (*GitTimerArgRoutineType)(void *ClientData, SdsIdType InArg, SdsId-
Type *OutArg, StatusType *status)

Language: C

Call:
(void) = GitTimer (StatusType *status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) status (StatusType *) Modified status

Include files: Git.h

External functions used:

External values used:

Prior requirements:

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 50

A.20 GitTimerArgExtract — Basic argument extraction routine for use with
GitTimer.

Function: Basic argument extraction routine for use with GitTimer.

Description: This routine can be supplied as an ArgCreate routine to GitTimer. All it does
is create an argument structure based on the supplied argument but with the first item
extracted and the others renamed Argumentl on wards.

Language: C

Call:
(void) = GitTimerArgExtract (ClientData,InArg,OutArg,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) ClientData (void *) Ignored

(>) InArg (SdsIdType) The argument to the timer actin
(<) OutArg (SdsIdType *) The resulting argument

(>) status (StatusType *) Modified status

Include files: Git.h
External functions used:
External values used:
Prior requirements:

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 51

A.21 GitTpiDelete — Delete an Item from the Task/Package Infomation list.

Function: Delete an Item from the Task/Package Infomation list.
Description: Delete an item previously put using GitTpiPut
Language: C

Call:
void = GitTpiDelete (key,item,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) key (Int ) The key that was used in the corresponding call to GitTpiPut

(') status (StatusType *) Modified status. If an item with the specified key cannot
be found, status is set to GIT__TPI_NOTFOUND;

Include files: Git.h

External functions used:

DitsGetUserData | Dits | Get user data.
DitsPutUserData | Dits | Put user data.
free CRTL | Release allocated memory.

External values used: none
Prior requirements: GitTpilnit must been called.

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 52

A.22 GitTpiGet — Get an Item from the Task/Package Infomation list.

Function: Get an Item from the Task/Package Infomation list.
Description: Return an item previously put using GitTpiPut
Language: C

Call:
void = GitTpiGet (key,item,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) key (Int ) The key that was used in the corresponding call to GitTpiPut
(<) item (Void **) The item put by GitTpiPut;

(') status (StatusType *) Modified status. If an item with the specified key cannot
be found, status is set to GIT__TPI_NOTFOUND;

Include files: Git.h

External functions used:

H DitsGetUserData ‘ Dits ‘ Get user data. H

External values used: none
Prior requirements: GitTpilnit must been called.

Support: Tony Farrell, AAO




AAO/GIT_SPEC_9 53

A.23 GitTpilnit — Initialise Task Package Information handling for the cur-

rent task.

Function: Initialise Task Package Information handling for the current task.

Description: The Task/Package Information routines allow independent packages to use the

DitsPutUserData()/DitsGetUserData() routines without conflict to maintian task specific
data. All access to DitsPutUserData()/DitsGetUserData() should be via these routines.

The main() function of a task should call this routine to initialise the package. Then, each
package which wishes to store common data should call GitTpiPut() to store the address
of information it wishes to save. Normally, the address which it wishes to store will be that
of a malloced area of memory. The key specified to GitTpiPut() should be unique amoung
all packages used by the task (I suggest something based on the message facility used by
the package since these numbers should be unique). Later, when the package wishes to
retreive such information, it can call GitTpiGet(). GitTpiDelete() can be used to delete
an entry.

The use of this package to store task specific common data ensures calling packages will
have no problems when ported to systems where all tasks run in the same memory context
(such as VxWorks).

Language: C

Call:

void = GitTpilnit (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(') status (StatusType *) Modified status.

Include files: Git.h

External functions used:

H DitsPutUserData \ Dits \ Put user data. H

External values used: none

Prior requirements: DitsInit has been called.

Support: Tony Farrell, AAQ




AAO/GIT_SPEC_9 54

A.24 GitTpiPut — Put an Item to the Task/Package Infomation list.

Function: Put an Item to the Task/Package Infomation list.

Description: An new entry is created in the Task/Package Information list. They specified
key and the user item are stored in the entry.

The key must be a unique integer amoungst all entries for the current DRAMA task.
Language: C

Call:
void = GitTpiPut (key,item,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) key (Int ) A key used to lookup this item when calling GitTpiGet. The message
facility code for the invoking package is recomended (assuming it only calls this routine
once) since it will be unique amoungst all packages.

(>) item (Void *) The item to be stores

(') status (StatusType *) Modified status. If the item already exists, then status is
set to GIT_TPI_EXISTS.

Include files: Git.h

External functions used:

DitsPutUserData | Dits | Put user data.
DitsGetUserData | Dits | Get user data.
GitTpiGet Git Get entry item.
malloc CRTL | Allocate memory.

External values used: none
Prior requirements: GitTpilnit must been called.

Support: Tony Farrell, AAQ




