
ANGLO-AUSTRALIAN OBSERVATORY AAO/ERS_SPEC_4
DRAMA Software Report 4
Version 0.3

Tony Farrell
16-Mar-94

Drama Error reporting system (Ers)

Contents

1 Introduction 2

2 Copyright details 2

3 Why not EMS/ERR 2

4 Usage 3
4.1 Overview . 3

4.1.1 Inherited status checking . 3
4.2 Reporting errors . 4
4.3 The contents of error messages . 5
4.4 Adding contextual information . 6
4.5 Deferred error reporting . 6
4.6 ErsOut . 9

5 Error output 9
5.1 Logging . 11
5.2 The Task Id . 11

6 Sprintf 12

7 Use in Starlink programs 12

8 Availability, Compiling and linking with Ers 12
8.1 Building under VMS . 12
8.2 Building under UNIX . 13
8.3 Building under VxWorks . 13

A Detailed Subroutine Descriptions 15
A.1 ErsAnnul — Annul all Error messages in the current context. 16
A.2 ErsClear — Flush all error messages at all contexts and reset to base context . . 17
A.3 ErsEnableTask — Enable Ers calls within an interrupt handler. 18
A.4 ErsFlush — Flush all error messages at the current context. 19
A.5 ErsGetAtCtx — Access all ERS messages reported at the current contact. 20
A.6 ErsGetTaskId — Get ERS task id for use with ErsEnableTask. 21

AAO/ERS_SPEC_4 2

A.7 ErsOut — Report an Error message. 22
A.8 ErsPop — Decrease Error context level . 24
A.9 ErsPush — Increase Error context level . 25
A.10 ErsRep — Report an Error message. 26
A.11 ErsRepNF — Report an Error message. No formating. 28
A.12 ErsRestoreTask — Restore the interrupted Task Id 30
A.13 ErsSPrintf — A safe version of the C RTL sprintf function. 31
A.14 ErsSetLogRoutine — Change the Ers log routine. 32
A.15 ErsStart — Startup Error reporting system. 33
A.16 ErsStop — Shutdown Error reporting system. 34
A.17 ErsVSPrintf — A safe version of the C RTL vsprintf function. 35

1 Introduction

The purpose of the Drama Error Reporting System (Ers) is to provide facilities for constructing
and storing reported error messages and for the delivery of those messages to the user via a
technique appropriate to the program being run.

The major design issue in a Error Reporting System is that it allow low level packages to
report errors using the appropriate output system for the application they are contained within,
while ensuring that those packages can be written independently of the output systems of any
application using them. For example, consider the Self Defining Data System (SDS). SDS
may be used in standalone programs, such as one to list SDS structures in a file. In such
applications, messages are normally just written to the standard output device (say using the
C language routine printf). But when the SDS routines called in such an application wish
to report an error, they cannot assume this is correct, since they could also be part of a Dits
application where the correct user interface to send the message to is an X-windows application
on another node in a network.

Ers allows low level packages to report errors in such a way that they can be sure it is sent to
the correct user interface, while allowing the application to remain totally independent of the
user interface.

2 Copyright details

Whilst most of this software is subject to the AAO copyright (commerical use requires AAT
board approval), this product includes software developed by the University of California, Berke-
ley and its contributors.

3 Why not EMS/ERR

You may ask why another package is required to do this job, as Starlink already provides a
similar facility in the EMS [2] and ERR [3] packages. The following reasons are given for writing
yet another package

� EMS/ERR is largely written in Fortran. This makes it unsuitable for real-time systems
for which Fortran is probably not available.

AAO/ERS_SPEC_4 3

� EMS/ERR uses its own formating technique. This is expensive both in time and space. It
is preferable to use the C printf style which although it may not be more efficient time
wise, it is already present in most programs using C, so why waste memory implementing
another technique.

� The interface to EMS/ERR is complicated by the requirements of backward compatiabilty
with older systems and the use of Fortran.

� EMS/ERR provides no support for special attributes attached to messages to allow classes
of messages to be differentated.

� EMS/ERR provides no inbuilt support for logging.

� EMS/ERR provides limited support for the ability to send muliple lines in one message,
such as we can now do using SDS.

4 Usage

4.1 Overview

In a program or package consisting of many levels of subroutines, each routine which has some-
thing informative to say about an error should be able to contribute to the information the user
receives. This includes:

� The subroutine which first detects the error, as this will probably have access to specific
information which is hidden from higher level routines.

� The chain of subroutines between the main program and the routine in which the error
originated. Some of these will usually be able to report on the context in which the error
occured and so add relevant information which is not available to routines at lower levels.

This can lead to several error reports arising from a single failure. In addition, it is not always
necessary for an error report to reach the user. For example, a high-level subroutine or the
main program may decide that it can handle an error detected at a lower level safely without
informing the user. In this case, it is necessary for error reports associated with that error to
be discarded and this can only happen if the output of error messages to the user is deferred.

4.1.1 Inherited status checking

The recommended method of indicating when errors have occurred is to use an integer status
value in each subroutine argument list.

This inherited status argument, say STATUS, should always be the last argument and every
subroutine should check its value on entry. The principle is as follows:

� The subroutine returns without action if STATUS is input with a value other than 0.

� The subroutine leaves STATUS unchanged if it completes successfully.

� The subroutine sets STATUS to an appropriate error value and reports an error message
if it fails to complete successfully.

AAO/ERS_SPEC_4 4

� In C, STATUS should be defined as a pointer to a StatusType, with the actual status
being the value being pointed too. StatusType is defined in the status.h include file.

Here is an example of the use of inherited status within a simple subroutine:

void routn(int value, StatusType * status)

{

/*

* Check the inherited global status.

*/

if (*status != 0) return;

<application code>

}

If an error occurs within the “application code” of such a subroutine, then STATUS is set to a
value which is not zero, an error is reported (see below) and the subroutine aborts.

Note that it is often useful to use a status argument and inherited status checking in subroutines
which “cannot fail”. This prevents them executing, possibly producing a run-time error, if their
arguments contain rubbish after a previous error. Every piece of software that calls such a
routine is then saved from making an extra status check. Furthermore, if the routine is later
upgraded it may acquire the potential to fail, and so a status argument will subsequently be
required. If a status argument is included initially, existing code which calls the routine will not
need to be changed. The only routines which do not require a status argument are functions
with no other arguments, which cannot fail and which return a single value, say a funciton to
fetch the current time.

4.2 Reporting errors

The subroutine used to report errors is ErsRep. It has a calling sequence of the form

ErsRep(flags, status, format, [arg , [...]);

Here, the flags argument in a bit mask which can influence the operation of the Ers system
and are also passed to the logging and output systems (to be described later). Bits 0 to 7 are
reserved to the Ers while bits bits 8 - 15 are available for logging systems (described later). The
following masks are defined in Ers.h and may be ORed together for the desired effect-

ERS_M_NOFMT Don’t format the string. Any formating arguments are ignored and the
format string is used exactly as specified.

ERS_M_HIGHLIGHT Suggest to the user interface that the message be highlighted in some
way (say reverse video or a bold font).

ERS_M_BELL Suggest to the user interface that the terminal bell (or an equivalent) should
be rung when the message is output

ERS_M_ALARM Suggest to the user interface that this is an urgent message which should
be acknowledged by the user.

AAO/ERS_SPEC_4 5

The status argument is the inherited status. ErsRep breaks the inherited status rules on two
points. First the location of the argument, which is comes second not last. This is to allow a
variable length argument list. Second, the routine works regardless of the value of the status
argument.

The format argument and all following arguments are used to construct the message text.
Formating is done using C run time library functions, see the description of the C printf

function for details. You should not include special characters in the formats (e.g. \n , \033

etc.) since you don’t know what type of user interface your message is being sent to. Only
characters for which the C funciton isprint returns true should be used 1.

Here is a simple example of error reporting where part of the application code of the previous
example detects an invalid value of some kind, sets status, reports the error and then aborts:

if (<VALUE INVALID>)

{

*status = myerrorcode;

ErsRep(ERS_M_BELL,status,"Value of %d is invalid",value);

}

else

...

4.3 The contents of error messages

The purpose of an error message is to be informative and it should therefore provide as much
relevant information about the context of the error as possible. It must also avoid the danger of
being misleading, or of containing too much irrelevant information which might be confusing to
a user. Particular care is necessary when reporting errors from within subroutines which might
be called by a wide variety of software. Such reports must not make unjustified assumptions
about what sort of application might be calling them. For example, in a routine that adds two
arrays, the report

Error adding two arrays.

would be preferable to

Error adding two images.

if the same routine could be called to add two spectra!

The name of the routine which called ErsRep to make an error report can often be a vital
piece of information when trying to understand what went wrong. However, the error report is
intended for the user, not the programmer, and so the name of an obscure internal routine is
more likely to confuse than to clarify the nature of the error. A good rule of thumb is to include
the names of routines in error reports only if those names also appear in documentation – so
that the function they perform can be discovered without delving into the code. An example of
this appears in the next section.

1Messages requiring mulitiple lines should be output using multiple calls to ErsRep.

AAO/ERS_SPEC_4 6

4.4 Adding contextual information

Instead of simply aborting when a status value is set by a called subroutine, it is also possible
for an application to add further information about the circumstances surrounding the error.
In the following example, an application makes several calls to a subroutine which might return
an error status value. In each case, it reports a further error message so that it is clear which
operation was being performed when the lower-level error occurred:

/* Smooth the sky values. */

smooth(nx, ny, sky, status);

if (*status != 0)

ErsRep(ERS_M_NOFMT,status,"SKYOFF: Failed to smooth sky values.");

else

{

/* Smooth the object values. */

smooth(nx, ny, object, status);

if (*status != 0)

ErsRep(ERS_M_NOFMT,status,"SKYOFF: Failed to smooth object values.");

else

....

}

Notice how an additional error report is made in each case, but because the original status value
contains information about the precise nature of the error which occurred within the subroutine
smooth, it is left unchanged.

If the first call to subroutine smooth were to fail, say because it could not find any valid pixels
in the image it was smoothing, then the error message the user would receive might be

Image contains no valid pixels to smooth.

SKYOFF: Failed to smooth sky values.

The first part of this message originates from within the subroutine smooth, while the second
part qualifies the earlier report, making it clear how the error has arisen. Since skyoff is the
name of an application known to the user, it has been included in the contextual error message.

This technique can often be very useful in simplifying error diagnosis, but it should not be
overdone; the practice of reporting errors at every level in a program hierarchy tends to produce
a flood of redundant messages. As an example of good practice for a subroutine library, an error
report made when an error is first detected, followed by a further contextual error report from
the “top-level” routine which the user actually called, normally suffices to produce very helpful
error messages.

On a side issue, notice the use of the flag ERS_M_NOFMT in the above calls. We set this flag
because we have not specified any formating arguments. We don’t need to do this, since the
formating routine can work this out, but it is more efficient to specify the flag as this lets ErsRep
know the time comsuming formating can be avoided.

4.5 Deferred error reporting

Although the action of the subroutine ErsRep is to report an error to the Error System, the
Error System has the capacity to defer the output of that message to the user. This allows the

AAO/ERS_SPEC_4 7

final delivery of error messages to be controlled within applications software, and this control
is achieved using the subroutines ErsPush , ErsPop, ErsFlush and ErsAnnul. This section
describes the function of these subroutines and how they are used.

The purpose of deferred error reporting can be illustrated by the following example. Consider
a subroutine, say HELPER, which detects an error during execution. The subroutine HELPER
reports the error that has occurred, giving as much contextual information about the error as
it can. It also returns an error status value, enabling the software that called it to react to the
failure appropriately. However, what may be considered an “error” at the level of subroutine
HELPER, e.g. an “end of file” condition, may be considered by the calling module to be a case
which can be handled without informing the user, e.g. by simply terminating its input sequence.
Thus, although the subroutine HELPER will always report the error condition, it is not always
necessary for the associated error message to reach the user. The deferral of error reporting
enables application programs to handle such error conditions internally.

Here is a schematic example of what subroutine HELPER might look like:

void helper (char *line, StatusType *status)

{

...

/*

* Check for end-of-file error

*/

if (feof(instream))

{

*status = <end-of-file error code>;

ErsRep(ERS_M_NOFMT,status,"End of input file reached");

}

/*

* Check for input error

*/

else if (ferror(instream))

{

*status = <input error code>;

ErsRep(0,status,"Error encountered during data input, errno = %x",errno);

}

}

Suppose HELPER is called and reports an error, returning with status set. At this point,
the error message may, or may not, have been received by the user – this will depend on the
environment in which the routine is running, and on whether the software which called HELPER
took any action to defer the error report. HELPER itself does not need to take action (indeed
it should not take action) to ensure delivery of the message to the user; its responsibility ends
when it aborts, and responsibility for handling the error condition then passes to the software
which called it.

Now suppose that the subroutine HELPED calls HELPER and wishes to defer any messages
from HELPER so that it can decide how to handle error conditions itself, rather than troubling
the user with spurious messages. It can do this by calling the routine ErsPush before it calls
HELPER. This has the effect of ensuring that all subsequent error messages are deferred by the
Error System and stored in an “error table”. ErsPush also starts a new “error context” which is
independent of any previous error messages or message tokens. A return to the previous context
can later be made by calling ErsPop, whereupon any messages in the new error context are

AAO/ERS_SPEC_4 8

transferred to the previous context. In this way, no existing error messages can be lost through
the deferral mechanism. Calls to ErsPush and ErsPop should always occur in matching pairs
and can be nested if required.

The operation of error message deferral can be illustrated by a simple example:

void helped (StatusType *status)

{

...

/* Create a new error context. */

ErsPush();

/* any error messages from HELPER are now deferred */

helper(line, status);

/* Release the current error context. */

ErsPop();

...

}

by calling ErsPush before calling HELPER, subroutine HELPED ensures that any error messages
reported by HELPER are deferred, i.e. held in the error table. HELPED can then handle the
error condition itself in one of two ways:

� By calling ErsAnnul(status), which “annuls” the error, deleting any deferred error mes-
sages in the current context and resetting status to zero. This effectively causes the error
condition to be ignored. For instance, it might be used if an “end of file” condition was
expected, but was to be ignored and some appropriate action taken instead. (A call to Er-

sRep could also be used after ErsAnnul to replace the initial error condition with another
more appropriate one, although this is not often done.)

� By calling ErsFlush(status), which “flushes out” the error, sending any deferred error
messages in the current context to the user and resetting status to zero. This notifies
the user that a problem has occurred, but allows the application to continue anyway. For
instance, it might be used if a series of files were being read: if one of these files could not
be accessed, then the user could be informed of this by calling ErsFlush before going on
to process the next file.

When ErsPop is called, the new error context created by ErsPush ceases to exist and any error
messages still remaining in it are transferred to the previous context.

Here is the previous example, elaborated to demonstrate the use of ErsAnnul. It shows how an
“end of file” condition from HELPER might be detected, annulled, and stored by HELPED in
a logical variable EOF for later use:

void helped (StatusType *status)

{

int eof = 0; /* end-of-file flag */

AAO/ERS_SPEC_4 9

...

/* Create a new error context. */

ErsPush();

/* any error messages from HELPER are now deferred */

helper(line, status);

/* Trap end-of-file status and annul any report messages */

if (*status == <end-of-file error status>)

{

ErsAnnul(status);

eof = 1;

}

/* Release the current error context. */

ErsPop();

...

}

Note that the routine chooses only to handle “end of file” error conditions; any other error
condition will not be annulled and will subsequently cause an abort when STATUS is checked
after the call to ErsPop.

4.6 ErsOut

In some high level code, the sequence

ErsRep(...);

ErsFlush(...);

may be common. This sequence can be replaced by a single call to ErsOut, which has the same
calling sequence as ErsRep. Note that ErsOut, like ErsFlush, removes the ability of higher level
code to handle the error and thus the use of ErsOut should be avoided in libraries which may
be used by other applications.

5 Error output

The final thing required is the actual ability to output the error. As mentioned above, errors
are output by a call to ErsFlush. But, as this routine could be called by library routines which
knows nothing about the user interface, just how do they get there.

The solution is in the use of ErsStart and ErsStop. There should be only one call to each of
these routines in each application and they should be from a level high enough to know about
the user interface in use. The format of ErsStart is

AAO/ERS_SPEC_4 10

extern ErsTaskIdType ErsStart(

ErsOutRoutineType outRoutine,

void * outArg,

ErsLogRoutineType logRoutine,

void * logArg,

StatusType * status);

Where-

� outRoutine is the actual output routine called whenever ErsFlush is called. Its format
is-

void (*ErsOutRoutineType)(

void * outArg,

unsigned int count,

ErsMessageType messages[],

StatusType * status);

– outArg is the argument supplied to ErsStart.

– count is the number of messages to be output.

– messages is an array of the messages. The format is described below.

� outArg is an argument which is passed directly to outRoutine.

� logRoutine a logging routine called whenever ErsRep is called. Its format is-

void (*ErsLogRoutineType)(

void * logArg,

ErsMessageType const * message,

StatusType * status);

– logArg is the argument supplied to ErsStart.

– message is the message to log. The format is described below.

If logging is not required, specify 0.

� logArg is an argument which is passed directly to logRoutine.

The type ErsMessageType is defined as follows

typedef struct {

StatusType mesStatus;

unsigned int context;

int flags;

char message[ERS_C_LEN];

} ErsMessageType;

Where

� mesStatus is the status supplied in the call to ErsRep.

� context is the context level at the time of the call to ErsRep.

� flags is the flags arguments supplied in the call to ErsRep.

AAO/ERS_SPEC_4 11

� message is the formated message text, as a null terminated string.

If zero is specified as the output routine, then the messages are written to the standard error
output device using C run time library routines.

If ErsStart is not called before calls ErsRep, then the messages are output immediately to
the standard error output device using C run time library routines. No defered error reporting
occurs and the rest of the Ers routines have no effect. ErsStop reverts the system to this state
if ErsStart has been called, after flushing any remaining messages.

The return value from ErsStatus is only of use in real time systems such as VxWorks. It is
explained in section 5.2.

5.1 Logging

Sometimes it is nice to log all messages reported using ErsRep, even if they are later annulled.
The logRoutine argument to ErsStart supports this. It is called for every call to ErsRep

5.2 The Task Id

Some systems, such as VxWorks based systems, run all programs in a common address space. In
such systems, static and global variables can be seen by all tasks. To allow tasks to have private
copies of static and global variables it is possible to have such variables saved and restored
during task context switching. Ers uses this technique to store task specific information. In
such systems, it is sometimes necessary to call Ers routines outside the context of a task (say
in an interrupt handler routine), during which the task specific information will be unavailable.
The routines ErsEnableTask and ErsRestoreTask allow this.

The technique requires the value returned from ErsStart to be available. You must supply this
value as the first argument to a call to ErsEnableTask. In this example, the value is passed as
the argument to the interrupt handler. (A type of ErsTaskIdType will fit in a void *).

int my_isr(void * parameter)

{

ErsTaskIdType SavedId;

ErsEnableTask((ErsTaskIdType)(parameter),&SavedId);

/* Calls to ErsRep are now possible. This allows me to call routines

in an interrrupt handler which use ErsRep to report problems

*/

ErsRestoreTask(SavedId);

}

Once Ers is enabled in the interrupt handler, the only call it makes sense to invoke is ErsRep,
which will send the message to some appropriate device (No stacking occurs). Calls to ErsPush,
ErsPop and ErsAnnul can be made but will be ignored. A call to ErsFlush or ErsClear is an
error and will be reported as such.

AAO/ERS_SPEC_4 12

6 Sprintf

Many C Run-time library routines which write to strings do not support any technique to
determine the maximum length of the string which is being written. As a result it is easy
to overwrite the stack. One such routine, sprintf, is requried by Ers. In order to avoid
stack problems, a special version of this routine and an associated routine, vsprintf, were
written. The routines ErsSPrintf and ErsVSPrintf provide an extra argument over sprintf
and vsprintf. The extra argument is before the other arguments and indicates the maximum
length of the output string.

I would like to suggest you use the Ers routines instead of the C Run-time library routines to
avoid stack overwrite problems.

7 Use in Starlink programs

Some packages using Ers will probably be used in Starlink software environment programs (such
as ADAM tasks). In this case, it would be nice if the Ers routines work nicely with the Starlink
EMS/ERR routines. A special copy of the library provides this support. In this version, all the
Ers routines except ErsStart and ErsStop are mapped to the appropriate Starlink routines.

8 Availability, Compiling and linking with Ers

Ers has been compiled under VAX/VMS C, the default compilers on Ultrix and SunOS, GNU
C on Ultrix, SunOS and under VxWorks, Microsoft Quick C under MSDOS and the MPW
compiler on a Macintosh. Under MPW, some modification may be required to replace calls to
fprintf and fputs (file stderr) with an appropriate call for MPW.

Three include files are provided. Ers.h contians the function prototypes and defines the various
Ers constants. The file Ers_Err.h contains the definitions of the Ers error codes, while the file
Ers_Err_msgt.h contains the message table definition for using in calls to MessPutFacility.

We assume here the software organisation described in [1] for both VMS and UNIX machines.

8.1 Building under VMS

To build programs using Ers under VMS, you must first execute the DRAMASTART command.

Compilation time - include files

The Ers include files can now be found in ERS_DIR:. By using an appropriate command line to
the C compiler2, you can specify them using simple double quote notation, such as-

#include "Ers.h"

2See the /INCLUDE= qualifier to the VMS C compiler.

AAO/ERS_SPEC_4 13

Link time

To use the normal Ers routines, link against the library ERS_DIR:ERS.OLB.

To use the Starlink version, you must execute the local Adam development startup. This is
done with the following sequence-

@ssc:login

adamstart

adamdev

ladamstart

Link against ERS_DIR:ERS_STAR.OLB and CNF_IMAGE/OPT.

8.2 Building under UNIX

To build programs using Ers under VMS, you must first execute the local DRAMA development
startup. This is done with the command ~drama/dramastart.

Compilation time - include files

The Ers include files can now be found in the location referenced to by the environment variable
ERS_DIR.

In your source code, you should specify them using simple double quote notation, such as-

#include "Ers.h"

Link time

The normal version of the normal Ers library can be found in $ERS_LIB/libers.a.

To link against the Starlink version, include ‘$ERS_LIB/ers_star_link‘ on the compiler command
line. The quotes surrounding $ERS_LIB/ers_star_link are grave accents (ascii code 60 hex).

Note that you may need to do the normal Starlink startup - “source /star/etc/login”, after
doing the dramastart command, for this to work.

8.3 Building under VxWorks

To build programs using Ers under VMS, you must first execute the local DRAMA development
startup on the development machine (The Sun). This is done with the command “~drama-
/dramastart vw68k” (For 680x0 based VxWorks machines).

Compilation time - include files

The Ers include files can now be found in the location referenced to by the environment variable
ERS_DIR.

In your source code, you should specify them using simple double quote notation, such as-

#include "Ers.h"

AAO/ERS_SPEC_4 14

Link time

The VxWorks version of the normal Ers library can be found in ERS_LIB/libers.a. There is no
Starlink version available under VxWorks since Starlink itself is not available under VxWorks.

References

[1] Tony Farrell, AAO . 23-Dec-1992, DRAMA Software Organisation. Anglo-Australian Ob-
servatory bf DRAMA Software Document 2.

[2] P C T Rees, Starlink Project. 8-Nov-1991, EMS Error Message Sevice Programmer’s Man-
ual. Starlink User Note 4.3.

[3] P C T Rees, Starlink Project. 8-Nov-1991, MSG and ERR Message and Error Reporting
Systems, Programmer’s Manual. Starlink User Note 104.3.

AAO/ERS_SPEC_4 15

A Detailed Subroutine Descriptions

AAO/ERS_SPEC_4 16

A.1 ErsAnnul — Annul all Error messages in the current context.

Function: Annul all Error messages in the current context.

Description: All pending messages at the current context are annulled, i.e. deleted. The
context level does not change

Language: C

Call:
(Void) = ErsAnnul (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(<) status (StatusType *) Set to zero.

Include files: Ers.h

External functions used: none

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 17

A.2 ErsClear — Flush all error messages at all contexts and reset to base
context

Function: Flush all error messages at all contexts and reset to base context

Description: All messages are written to the user. The context level does not change is reset
to the base context.

Messages are written using the output routine supplied by the user when ErsStart was
called. If no routine was supplied, then the messages are written to the standard Error
output device using the C run time library.

Language: C

Call:
(Void) = ErsClear (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(!) status (StatusType *) Set to ERS__NOTACTIVE if ERS is not active. Otherwise, as
per ErsFlush. Unlike ErsFlush, this routine does not work if status is bad on entry.

Include files: Ers.h

External functions used:

ErsFlush Ers Flush error messages.
fprintf Crtl Write a message.

External values used: stderr (Crtl) The standard error device.

Prior requirements: ErsStart should have been called.

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 18

A.3 ErsEnableTask — Enable Ers calls within an interrupt handler.

Function: Enable Ers calls within an interrupt handler.

Description: Some Systems, such as VxWorks based systems, run all programs in a common
address space. In such systems static and global variables can be seen by all tasks. To
allow tasks to have private copies of static and global variables it is possible to have such
variables saved and restored during task context switching. Ers uses this technique to store
task specific information. In such systems it is sometimes necessary to call Ers routines
outside the context of a task (say in an interrupt routine), during which the task specific
information will be unavailable. This routine is used in conjunction with ErsStart and
ErsRestoreTask to make the task specific information available in such places.

This call is normally made at the begining of an interrupt handler. The argument should
be a value previously returned by a call made to ErsStart() when executing in normal task
context. After this call is made, Ers routines can be invoked although all that they do is
report error using a method appropaite to the interrupt handler.

The value returned by this function should be supplied to ErsRestoreTask after before you
exit the interrupt handler to ensure the task that was interrupted is restored to its original
state.

This call is not neccessary or desirable on systems with process specific address spaces
(VMS or UNIX). On such systems it does nothing.

Note that on VxWorks, if this function is called when not running at interrupt context,
then taskLock() will be invoked to lock the current task as the running task - to avoid
corruption issues.

Language: C

Call:
(Void) = ErsEnableTask (TaskId, SavedTaskId)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) TaskId (ErsTaskIdType) A value returned by DitsGetTaskID.

(<) SavedTaskId (ErsTaskIdType *) The value which is to be passed to ErsRestore-
Task is put here.

Include files: Ers.h

External functions used: None

External values used: None

Prior requirements: ErsStart should have been called.

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 19

A.4 ErsFlush — Flush all error messages at the current context.

Function: Flush all error messages at the current context.

Description: All messages at the current context are written to the user. The context level
does not change.

Messages are written using the output routine supplied by the user when ErsStart was
called. If no routine was supplied, then the messages are written to the standard Error
output device using the C run time library.

Language: C

Call:
(Void) = ErsFlush (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(!) status (StatusType *) Set to zero, unless an output error occurs, in which case it
is the error code returned by the output routine.

Include files: Ers.h

External functions used:

fprintf Crtl Formated print.
fputs Crtl Output a string
logMsg VxWorks Log a message

External values used: stderr (Crtl) The standard error device.

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 20

A.5 ErsGetAtCtx — Access all ERS messages reported at the current contact.

Function: Access all ERS messages reported at the current contact.

Description:

Language: C

Call:
(Void) = ErsCtx (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(<) count (unsigned int *) Number of message at the current context.

(<) messageArray (ErsMessageType **) Will be set to an array of ErsMessageType
of size at least “count”. If count is set to zero, then this may be set to a null pointer.

(<) status (StatusType *) Set to zero.

Include files: Ers.h

External functions used: none

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 21

A.6 ErsGetTaskId — Get ERS task id for use with ErsEnableTask.

Function: Get ERS task id for use with ErsEnableTask.

Description: Some Systems, such as VxWorks based systems, run all programs in a common
address space. In such systems static and global variables can be seen by all tasks. To
allow tasks to have private copies of static and global variables it is possible to have such
variables saved and restored during task context switching. Ers uses this technique to store
task specific information. In such systems it is sometimes necessary to call Ers routines
outside the context of a task (say in an interrupt routine), during which the task specific
information will be unavailable. This routine is used in conjunction with ErsEnableTask
and ErsRestoreTask to make the task specific information available in such places.

This routine can be used where the task ID returned by ErsStart(3) is not avaiable. It
should be invoked in non-interrupt handler code to fetch the task id for passing to ErsEn-
ableTask(3).

Language: C

Call:
(ErsTaskIdType) = ErsGetTaskId (StatusType *status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(!) status (StatusType *) Modified status.

Include files: Ers.h

External functions used: None

External values used: None

Function Value: A value which can be passed to ErsEnableTask from an interrupt handler.
If status is non-zero, zero is returned.

Prior requirements: ErsStart should have been called.

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 22

A.7 ErsOut — Report an Error message.

Function: Report an Error message.

Description: Implements the equivalent of a call to ErsRep followed by a call to ErsFlush.

The format and it’s arguments are the the same as used by the printf C RTL function.

Language: C

Call:
(Void) = ErsOut (flags, status, format, [arg ,[...]])

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) flags (Int) Message flags. These flags influence the operation of the Ers system and
are also passed to the logging and output routines when these are called for this
message. Bits 0 to 7 are reserved to the Ers system while bits 8 - 15 are available for
logging systems. Other bits should not be used since they may not be available on
16bit machines. The following masks are defined and may be ORed for the desired
effect-

ERS_M_NOFMT Don’t format the string. Any formating argu-
ments are ignored and the format string is used
as specified. Deprecated!! Call ErsRepNF() fol-
lowed by ErsFlush() instead of specifying this
flag to

() ErsOut () to avoid compiler warnings.

ERS_M_HIGHLIGHT Suggest to the user interface that the message
should be highlighted.

ERS_M_BELL Suggest to the user interface that the terminal
bell (or an equivalent) should be rung when the
message is output.

ERS_M_ALARM Suggest to the user interface that this is urgent
message which should be acknowledged by the
user.

(!) status (StatusType *) Set to zero unless the message table is full, when status is
set to ERS__NOSPACE, or an output error occurs, in which case it is set to the error
code returned by the output routine.

(>) format (Char *) A format statement. See the description of the C printf function.

(>) arg (assorted) Formating arguments. Set the description of the C printf function.

Include files: Ers.h

External functions used:

AAO/ERS_SPEC_4 23

va_start Crtl Start a variable argument session.
va_args Crtl Get an argument.
va_end Crtl End a variable argument session.
fputs Crtl Output a string.
fprint Crtl Output a formated string.
memcpy Crtl Copy one string to another.
logMsg VxWorks Log a message.
ErsVSPrintf Ers Safe format.
ErsFlush Ers Flush error messages.

External values used: stderr (Crtl) The standard error device.

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 24

A.8 ErsPop — Decrease Error context level

Function: Decrease Error context level

Description: Pops the Error message table context, returning the Error Message Service to the
previous context. Note that any messages pending output will be passed to this previous
context, not annulled.

Language: C

Call:
(Void) = ErsPop ()

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

Include files: Ers.h

External functions used: none

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 25

A.9 ErsPush — Increase Error context level

Function: Increase Error context level

Description: Begin a new Error reporting context so that delivery of subsequently reported
Error messages is defered and the messages held in the Error table. A Subsequent call to
ErsAnnul or ErsFlush will only annul or flush the contexts of the Error table within this
new context.

Language: C

Call:
(Void) = ErsPush ()

Parameters: (“>” input, “!” modified, “W” workspace, “<” output) none

Include files: Ers.h

External functions used: none

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 26

A.10 ErsRep — Report an Error message.

Function: Report an Error message.

Description: According to the Error context, the Error message is either sent to the user or
retained in the Error table. The latter case allows the application to take further action
before deciding if the user should receive the message. On successfull completion, status
is returned unchanged unless an Error occurs in this routine.

Output will only occur if the context is 0, in which case ErsStart has not been called and
the message will be output using fputs to stderr.

If a logging routine was specified when ErsStart was called, then the logging routine is
called after the message is formated.

The format and it’s arguments are the the same as used by the printf C RTL function.

The maximum length of stored messages is given by the macro ERS_C_LEN (currently 200
characters including the null terminator) so the result of the format should be less then
this value. If the format results in a string greater then this value it is truncated.

Language: C

Call:
(Void) = ErsRep (flags, status, format, [arg ,[...]])

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) flags (Int) Message flags. These flags influence the operation of the Ers system and
are also passed to the logging and output routines when these are called for this
message. Bits 0 to 7 are reserved to the Ers system while bits 8 - 15 are available for
logging systems. Other bits should not be used since they may not be available on
16bit machines. The following masks are defined and may be ORed for the desired
effect-

ERS_M_NOFMT Don’t format the string. Any formating argu-
ments are ignored and the format string is used
as specified. Deprecated!! Call ErsRepNF() in-
stead of specifying this flag to ErsRep() to avoid
compiler warnings.

ERS_M_HIGHLIGHT Suggest to the user interface that the message
should be highlighted.

ERS_M_BELL Suggest to the user interface that the terminal
bell (or an equivalent) should be rung when the
message is output.

ERS_M_ALARM Suggest to the user interface that this is urgent
message which should be acknowledged by the
user.

(!) status (StatusType *) The routine works regardless of the value of status. If the
message table is full, then status is set to ERS__NOSPACE, otherwise, it is not touched.

(>) format (Char *) A format statement. See the description of the C printf function.

(>) arg (assorted) Formating arguments. Set the description of the C printf function.

AAO/ERS_SPEC_4 27

Include files: Ers.h

External functions used:

va_start Crtl Start a variable argument session.
va_args Crtl Get an argument.
va_end Crtl End a variable argument session.
fputs Crtl Output a string.
fprint Crtl Output a formated string.
memcpy Crtl Copy one string to another.
logMsg VxWorks Log a message.
ErsVSPrintf Ers Safe format.

External values used: stderr (Crtl) The standard error device.

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 28

A.11 ErsRepNF — Report an Error message. No formating.

Function: Report an Error message. No formating.

Description: According to the Error context, the Error message is either sent to the user or
retained in the Error table. The latter case allows the application to take further action
before deciding if the user should receive the message. On successfull completion, status
is returned unchanged unless an Error occurs in this routine.

Output will only occur if the context is 0, in which case ErsStart has not been called and
the message will be output using fputs to stderr.

If a logging routine was specified when ErsStart was called, then the logging routine is
called after the message is formated.

The format and it’s arguments are the the same as used by the printf C RTL function.

The maximum length of stored messages is given by the macro ERS_C_LEN (currently 200
characters including the null terminator) so the result of the format should be less then
this value. If the format results in a string greater then this value it is truncated.

Language: C

Call:
(Void) = ErsRepNF (flags, status, string)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) flags (Int) Message flags. These flags influence the operation of the Ers system and
are also passed to the logging and output routines when these are called for this
message. Bits 0 to 7 are reserved to the Ers system while bits 8 - 15 are available for
logging systems. Other bits should not be used since they may not be available on
16bit machines. The following masks are defined and may be ORed for the desired
effect-

ERS_M_NOFMT Ignored.
ERS_M_HIGHLIGHT Suggest to the user interface that the message

should be highlighted.
ERS_M_BELL Suggest to the user interface that the terminal

bell (or an equivalent) should be rung when the
message is output.

ERS_M_ALARM Suggest to the user interface that this is urgent
message which should be acknowledged by the
user.

(!) status (StatusType *) The routine works regardless of the value of status. If the
message table is full, then status is set to ERS__NOSPACE, otherwise, it is not touched.

(>) string (Char *) String to output.

Include files: Ers.h

External functions used:

AAO/ERS_SPEC_4 29

fputs Crtl Output a string.
fprint Crtl Output a formated string.
memcpy Crtl Copy one string to another.
logMsg VxWorks Log a message.
ErsVSPrintf Ers Safe format.

External values used: stderr (Crtl) The standard error device.

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 30

A.12 ErsRestoreTask — Restore the interrupted Task Id

Function: Restore the interrupted Task Id

Description: Some Systems, such as VxWorks based systems, run all programs in a common
address space. In such systems static and global variables can be seen by all tasks. To
allow tasks to have private copies of static and global variables it is possible to have such
variables saved and restored during task context switching. Ers uses this technique to
store tErsGetAtCtxask specific information. In such systems it is sometimes necessary to
call Ers routines outside the context of a task (say in an interrupt routine), during which
the task specific information will be unavailable. This routine is used in conjunction with
ErsStart and ErsEnableTask to make the task specific information available in such places.

This call is made in interrupt handlers. The argument should be the value returned by
a previous call to ErsEnableTask in the interrupt handler. After this call is made, Ers
routines can no longer be used.

This call is not neccessary or desirable on systems with process specific address spaces
(VMS or UNIX). On such systems it does nothing.

Language: C

Call:
(Void) = ErsRestoreTask (TaskId)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) TaskId (ErsTaskIdType) A value returned by ErsEnableTask.

Include files: Ers.h

External functions used: None

External values used: None

Prior requirements: ErsStart should have been called.

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 31

A.13 ErsSPrintf — A safe version of the C RTL sprintf function.

Function: A safe version of the C RTL sprintf function.

Description: The standard C RTL version of sprintf is unsafe as nothing limits the length of
the output string. It is easy to overwrite the stack. By providing a length argument string
argument, this routine implements a safe version of sprintf.

See ErsVSPrintf() for more details.

Language: C

Call:
(int) = ErsSPrintf(length, string, format, args...)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) length (int) The length of string.

(<) string (char *) The pointer to the output string

(>) format (char *) A format specification (>) arg... (anything) argument list

Function value: EOF indicates the format string exceeds the length available, otherwise, the
number of characters output.

Include files: Ers.h, stdio.h

External functions used:

ErsVSPrintf Ers A save version of vsprintf.

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 32

A.14 ErsSetLogRoutine — Change the Ers log routine.

Function: Change the Ers log routine.

Description: Allows us to change the routine used to log ERS messages.

Language: C

Call:
(void) = ErsSetLogRoutine (logRoutine, logArg, oldLogRoutine, oldLogArg, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) logRoutine (ErsLogRoutineType) If non zero, this routine will be called to log
any messages reported by ErsRep.

(>) logArg (void *) Passed directly to logRoutine as its first argument and not exam-
ined by Ers.

(>) oldLogRoutine (ErsLogRoutineType *) The previous log routine is returned here
- if non-zero, the new routine should call this routine after it has done its job.

(>) oldLogArg (void *) Should be passed as the first argument to the old log routine.

(!) status (StatusType *) Modified status.

Include files: Ers.h

External functions used: none

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 33

A.15 ErsStart — Startup Error reporting system.

Function: Startup Error reporting system.

Description: Startup the Error reporting system. Calls may be made to the other Ers routines
without calling this routine, but if this is done, then messages reported with ErsRep are
written directly to the user standard Error output, not stored.

Language: C

Call:
(ErsTaskIdType) = ErsStart (outRoutine, outArg, logRoutine, logArg, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) outRoutine (ErsOutRoutineType) If non zero, this routine will be called to out-
put any messages output by ErsFlush.

(>) outArg (void *) Passed directly to outRoutine as its first argument and not exam-
ined by Ers.

(>) logRoutine (ErsLogRoutineType) If non zero, this routine will be called to log
any messages reported by ErsRep.

(>) logArg (void *) Passed directly to logRoutine as its first argument and not exam-
ined by Ers.

(!) status (StatusType *) Modified status. routine returns immediately if non-zero.
If Ers is already active, it is set to ERS__ACTIVE. An error allocating space for the
table will set status to ERS__MALLOCERR. Under VxWorks, an error setting up a task
varable will cause it to be set to ERS__TASKVARERR.

Include files: Ers.h

Function Value: A value which can be passed to ErsEnableTask from an interrupt handler.

External functions used:

malloc Crtl Allocate memory.
taskVarAdd Crtl Add a task variable. none

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 34

A.16 ErsStop — Shutdown Error reporting system.

Function: Shutdown Error reporting system.

Description: The major effect of this routine is that in any future calls to ErsRep, the message
is reported immediately to stderr. The Output and logging routine supplied by the previous
call to ErsStart are forgotton.

The first thing this routine does is flush all pending messages.

Language: C

Call:
(Void) = ErsStop (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(!) status (StatusType *) Modified status. routine returns immediately if non-zero.
If Ers is not active, it is set to ERS__NOTACTIVE. Under VxWorks, an error deleting
a task varable will cause it to be set to ERS__TASKVARERR.

Include files: Ers.h

External functions used:

ErsClear Ers Flush all outstanding errors.
free Crtl Release memory.
taskVarDelete VxWorks Delete a task variable.

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

AAO/ERS_SPEC_4 35

A.17 ErsVSPrintf — A safe version of the C RTL vsprintf function.

Function: A safe version of the C RTL vsprintf function.

Description: The standard C RTL version of vsprintf is unsafe as nothing limits the length of
the output string. It is easy to overwrite the stack. By providing a length argument string
argument, this routine implements a safe version of vsprintf.

When not under VxWorks, this uses vsnprintf().

Under VxWorks, the fioFormatV routine is used.

Language: C

Call:
(int) = ErsVSPrintf(length, string, format, arg)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) length (int) The length of string.

(<) string (char *) The pointer to the output string

(>) format (char *) A format specification

(>) arg (va_list) Variable argument list

Function value: EOF indicates the format string exceeds the length available, otherwise, the
number of characters output.

Include files: Ers.h, stdio.h

External functions used:

fioFormatV VxWorks Do a C style format.

External values used: none

Prior requirements: none

Support: Tony Farrell, AAO

