ANGLO-AUSTRALIAN OBSERVATORY AAO/DUL_SPEC_13

DRAMA Software Report 13
Version 0.5

Tony Farrell

23-Apr-97
DRAMA Utilities library
Contents

1 Introduction 3
2 C++ support 3
3 File Search Path Support 3
A Detailed Subroutine Descriptions 3
A.1 DulErsAnnul — Annul the current stack of subsidary task messages. . . . . . . . 4
A.2 DulErsFinished — Shutdown the DulErs system for this action. . . . . . . . . .. 4
A.3 DulErsInit — Initialise the DulErs system for this action. . . . . . ... ... .. 5
A.4 DulErsMessage — Handle subsidary task Ers messages. . . ... ... ... ... 5
A.5 DulErsPutRequest — Tidy up DulErs stuff before calling DitsPutRequest(3). . . 6
A.6 DulErsRep — Report the current stack of subsidary task messages using ErsRep(3). 7
A.7 DulFindFile — Find a file using wildcards and search paths. . . . . . .. ... .. 8
A.8 DulFindFileEnd — Finish finding files. . . . . . . . .. . .. .. ... ... .... 10

A.9 DulFitsimgCreate — Define a new Photo image format to support Tcl images
from Fits structures. . . . . . . . ..o 10
A.10 DulFitsRead — Implements a Tcl Command to read a Fits file into an Sds structure. 11

A .11 DulGetPathW — Get a path to a task, blocking the current action until it is
complete. . . . . e e e 12

A.12 DullntGetArgument — Gets the argument supplied when DullntSignal() was
invoked. . . . ... 13
A .13 DullntGetData — Get the client data item associated with a DullntType item. . 14
A.14 DullntISR — A complete ISR which invokes DullntSignal(). . . . . . .. ... .. 14
A.15 DullntInit — Initialise a DullntType variable for this action. . . . ... ... .. 15
A.16 DullntSignal — Signal the action which created the DullntType variable. 16
A .17 DullntTidy — Tidy up a DullntType structure. . . . . . . . . ... ... ... .. 16
A.18 DulLoadFacs — Loads the standard facilites and user specified ones. . . . . . . . 17
A.19 DulLoadW — Load a task and get a path to it, blocking until it is complete. 18

A.20 DulMessageW — Send a message to task, blocking the current action until it is
complete. . . ... 19



AAO/DUL_SPEC_13 2

A .21 DulMessageWArg — Send a message to task, blocking the current action until it

iscomplete. . . . . . . e 21

A .22 DulParseFileName — Parse a file specification using defaults and search paths. . 22

A .23 DulReadFacility — Reads a message facility table (_msgt.h) file. . . . . . . . .. 24

A.24 DulTranslate — Translate environment variables and logical names in strings . . 25

B Programs 26

B.1 =xditscmd — A simple X Windows based interface to DRAMA. . . . . . . . ... .. 26

B.2 dfindfile — Find a file using search paths, defaults and wildcards. . . . . . . . .. 30

B.3 dparsefile — Parse a file name using defaults and search paths. . . . . ... . .. 30
Revisions:

V0.0 07-Feb-1995 Original Version
V0.0.1 24-Feb-1995 Minor changes to command descriptions.
V0.5 23-Apr-1997 Minor update to documentation. Add “See Also” lines.



AAO/DUL_SPEC_13 3

1 Introduction

The DRAMA Utility Library (DUL) is a collection of various utility programs and routines.
It is meant to provide functions generally required of DRAMA programs but which are not

required as part core of DRAMA. It is likely that some features of the GIT library will eventually
be moved into DUL.

2 C+H+ support

If C++ is enabled when DRAMA is built, then the DUL library will include a package which
supports the use of C++ with DRAMA programs. A separate document is provided for this
package - see [1].

3 File Search Path Support

Various routines in this library provide support for file search paths and file name defaults.
Some explaination of these techniques is required. In the VMS operating system, you can define
an item called a “logical name” to point to a list of directories. You can then use this logical
name in a file specification. This allows you to have a search path of directories in which to
search for a given file.

Under UNIX, the shell’s PATH “environment variable” performs basically the same function, but
this feature is specific to the various command shells and any programs which required the
feature had to reimplement it. Routines in this library allow the use of this feature for any
“environment variable”. In addition, they also support wildcarding and defaults. Wildcarding
is not normally available in UNIX programs as is another feature normally implmented by the
shell while defaulting needs a bit more explaination.

Assume you are writing a program which requires the user to specify an input file at some point.
Now you may introduce a convention which says such files for this program normally end in
“.yak”. In addition, there may be both a default version of this file - “defaults.yak” and
a local defaults version “local_defaults.yak” available in the directory “/usr/local/yak”.
So you now have a default directory - “/usrlocal/yak”, a default name - “defaults” and
a default type - “.yak”. It would nice if, when prompting the user for their desired option,
that that person does not have to specify parts for which defaults are known. For example, if
the local defaults file - “local_defaults.yak” is required, the user should only have to enter
“local_defaults”.

The routines DulFindFile() and DulParseFileName() implement support for these features
in a way that is portable accross all platforms supported by DRAMA.

A Detailed Subroutine Descriptions

The following are details of all the Dul routines which have been implemented at this stage.



AAO/DUL_SPEC_13 4

A.1 DulErsAnnul — Annul the current stack of subsidary task messages.

Function: Annul the current stack of subsidary task messages.

Description: Annuls the current stack of subsidary task messages. After this call, DulErsRep()
will have nothing to report until DulErsMessage() is called again to responed to a subsidary
task ERS message.

Language: C

Call:
(Void) = DulErsAnnul (info,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)>

(1) info (DulErsType *) Structure initialised by DulErsInit(3).

(') status (StatusType *) Modified status. Cleared by this routine unless there is an
error in the annul in which case it is set the that error.

Include files: Dul.h

See Also: Dul library document, Ers Document, DulErsInit(3), DulErsRep(3), DulErsFlush(3),
ErsAnnul(3).

Support: Tony Farrell, AAO

A.2 DulErsFinished — Shutdown the DulErs system for this action.

Function: Shutdown the DulErs system for this action.

Description: This routine flushes and Ers messages held by the DulErs routines and reenables
the default handling of subsidary task ERS messages, i.e., that they go directly to the user.

You need only invoke this routine if your action intends to continue rescheduling and is no
longer interested in the Ers messages from subsidary actions.

Language: C

Call:
(Void) = DulErsFinished (info,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(') info (DulErsType *) The Dullnfo.
(') status (StatusType *) Modified status.

Include files: Dul.h



AAO/DUL_SPEC_13 5

See Also: Dul library document, Ers Document, DulErsInit(3), DitsInterested(3), DitsPutRe-
quest(3), ErsRep(3), ErsFlush(3).

Support: Tony Farrell, AAQ

A.3 DulErsInit — Initialise the DulErs system for this action.

Function: Initialise the DulErs system for this action.

Description: This routine should be invoked when ever an action wishes to manage Ers
messages output by subsidary actions. The user should pass the address of an item of type
DulErsType which is initialised by this routine and passed to other routines.

The action invoking this routine will now receive Ers messages from subsidary tasks (Dits-
GetEntReason(3) will return DITS_REA_ERROR). When it gets such messages, is should
invoke DulErsMessage(3). Additionally, when the action completes, DulErsPutRequest(3)
should be invoked to tidy up, instead of DitsPutRequest(3).

Language: C

Call:
(Void) = DulErsInit (info,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(<) info (DulErsType *)
(') status (StatusType *) Modified status.

Include files: Dul.h

See Also: Dul library document, Ers Document, DulErsMessage(3), DulErsPutRequest(3),
DulErsAnnul(3), DulErsRep(3), DitsGetEntReason(3), DitsInterested(3), DitsPutRequest(3),
ErsRep(3), ErsAnnul(3).

Support: Tony Farrell, AAQ

A.4 DulErsMessage — Handle subsidary task Ers messages.

Function: Handle subsidary task Ers messages.
Description: If DitsGetEntReason(3) returns DITS_REA_ERROR, then process the associated
Ers message by storing it internally.

If you have invoked DulErsInit(), then normally you invoke this routine each time you get
a message of type DITS_REA_ERROR, to add those messages to the stack of ERS messages



AAO/DUL_SPEC_13 6

maintained by the info variable. You can later annul those messages using DulErsAnnul
or report them using DulErsRep. This allow you to decide which of them is sent to the
user rather then accepting the subsidiary task’s output.

For example, you may decide that if the subsidary action completes with a specified error
code, that condition can be handled by your task, so you stack any Ers messages reported
by the task and then when you see the action completion message, you check the status.
If the status was the one you are looking for, you can call DulErsAnnul() to annul of the
messages. Otherwise, you call DulErsRep() or DulErsPutRequest() to cause the messages
to be reported and output.

This facility provides the type of control of subsidiary task Ers messages that you have
over your own Ers messages when using ErsPush(), ErsPop(), ErsAnnul() and ErsFlush().

Language: C

Call:
(Void) = DulErsMessage (info,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(') info (DulErsType *) Structure initialised by DulErsInit(3).
(1) status (StatusType *) Modified status.

Include files: Dul.h

See Also: Dul library document, Ers Document, DulErsInit(3), DitsGetEntReason(3), DulEr-
sAnnul(3), DulErsRep(3), DulErsFlush(3), ErsRep(3), ErsAnnul(3).

Support: Tony Farrell, AAO

A.5 DulErsPutRequest — Tidy up DulErs stuff before calling DitsPutRe-
quest(3).

Function: Tidy up DulErs stuff before calling DitsPutRequest(3).

Description: Having called DulErsInit(3), you should always use this routine instead of DulPu-
tRequest(3) to put action completion codes. In addition, you should always put an action
completion code, never rely on the automatic putting of the DITS_REQ_END code.

Note, this routine will do some work if status is bad on entry, being the tidying up of
DulErs. It won’t call DitsPutRequest() if status is bad. i

The reason for this routine is to ensure that DulErsRep‘ is invoked if the reason indicates
the action is completing, i.e. DITS_REA_END and DITS_REA_EXIT.

Language: C

Call:
(Void) = DulErsPutRequest (info,request,status);



AAO/DUL_SPEC_13 7

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)>

(1) info (DulErsType *) Structure initialised by DulErsInit(3).
(>) request (DitsReqType) The request, see DitsPutRequest(3).
(1) status (StatusType *) Modified status.

Include files: Dul.h

See Also: Dul library document, Ers Document, DulErsInit(3), DitsErsMessage(3), DulErsAn-
nul(3), DulErsRep(3).

Support: Tony Farrell, AAD

A.6 DulErsRep — Report the current stack of subsidary task messages using
ErsRep(3).

Function: Report the current stack of subsidary task messages using ErsRep(3).

Description: This routine uses ErsRep(3) to report the current stack of subsidary task error
messages. These messages will have been stacked using DulErsMessage(). Before and after
calling this routine, you can use the standard Ers functions to control the messages.

Language: C

Call:
(Void) = DulErsRep (info,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)>

(1) info (DulErsType *) Structure initialised by DulErsInit(3).

(') status (StatusType *) Modified status. Note, the routine works when status is
bad, as per ErsRep(3), but status may be set to a different status if the error reporting
process fails.

Include files: Dul.h

See Also: Dul library document, Ers Document, DulErsInit(3), DulErsRep(3), DulErsFlush(3),
ErsRep(3).

Support: Tony Farrell, AAO




AAO/DUL_SPEC_13 8

A.7 DulFindFile — Find a file using wildcards and search paths.

Function: Find a file using wildcards and search paths.

Description: This routine is meant to find existing files using wildcarding, logical name/
environment variable search paths and defaults.

Two file specifications are supplied, the “filespec” to find and a “defaultspec”. Each file
specification is broken up into three components and components not supplied as part of
“filespec” are taken from corresponding parts of “defaultspec”.

File specifications are made up of one of the following formats

DIRECTORY_SPEC:name.type
DIRECTORY_SPEC/name.type

There are considered to be three components . The first component is the “DIRECTO-
RY_SPEC”, which specifies the directory in which to find the file. If neither the “filespec”
or “defaultspec” specify a DIRECTORY_SPEC, then the current default directory is used.

The second component is “name”. This consists of the string between the the last slash
(or the colon) and the last period. If not supplied in either “filespec” or “defaultspec”
then the wildcard “*” is supplied.

The third component is “type”. This consists of the string between the the last period
and the end of the string. If not supplied in either “filespec” or “defaultspec”, then the
wildcard “*” is supplied under VMS and nothing is supplied under Unix. Note that if this
component is supplied under Unix/VxWorks in “defaultspec”, then it is not possible to
select a file which does not have a type. This restriction is required to get the defaulting
effect normally required.

Since there may be multiple files which meet the specification, a context variable allows
you to call this routine multiple times to return each file.

Both “defaultspec” and “filespec” are first processed through DulTranslate to translate en-
vironment variables or logical names represented using formats accepted by DulTranslate.
Note that there is a limit of 1000 characters on the resulting translation. See DulTranslate
for more details.

Unix/VxWorks Notes: If the directory specification ends in a colon then DIRECTORY_SPEC
is considered to be an environment variable which will be translated. The result of this
translation may be a colon separated list of directories which will be searched in order for
the files. Alternately, for these operating systems, you may specify such a colon separated
list directly.

Wildcards may be specified for the “name” and “type” components using standard UNIX

shell style wildcards. The directory defaults to “./” - the current default.
VMS Notes: No longer supported (April 2018).

Language: C



AAO/DUL_SPEC_13 9

Call:
(Void) = DulFindFile (fileSpec,defaultSpec,flags,resultSize, context,result,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) fileSpec (char *) The specification of the file to find. See above for details.

(>) defaultSpec (char *) The default specifications for the varoius components not sup-
plied in in fileSpec. For components are not supplied here, the corresponding com-
ponents in current_directory:*.* is used under VMS and current_directory:* under
Unix/VxWorks. This argument is optional and my be specified as a null pointer.

(>) flags (int) A mask of flags. Possibilities are

DUL_M_NOWILD | Don’t allow wildcards. Search paths will still be
allowed.

DUL_M_IMPDIR | If a directory is found using the “<name>:” logi-
cal name translation format, then return in that
format rather translated. This is useful if the
name is to be used to load tasks via

() IMP (DRAMA) where the limit is 63 characters.
(>) resultSize (unsigned int) Size of the result string

(') context (DulFindFileContextType **) If non-zero, enables multiple calls to find
multiple matches. You should pass the address of a pointer to a variable of the
specified type. On the first call you should set it to zero. If you use this argument,
then you must call DulFindFileEnd when you are finished. If you pass the address
of a non-zero pointer, it is assume this was set by a previous call to this routine and
fileSpec and defaultSpec will be ignored.

(<) result (char *) The resultant file specification.

(') status (StatusType *) Modified status. Will be DUL__STRLEN if the result string
is too small. Will be DUL__FILENOTFOUND is no file is found. Will be DUL__NOMORE
if there are no more files (subsequent searches). Other errors are possible from sub-
sidiary routines.

Include files: DulFindFile.h
See Also: Dul library document, DulFindFileEnd(3), DulParseFileName(3), dfindfile(1).

Support: Tony Farrell, AAQ




AAO/DUL_SPEC_13 10

A.8 DulFindFileEnd — Finish finding files.

Function: Finish finding files.

Description: If you have been using DulFindFile to find multiple files, this routine releases
the memory used for the context.

Language: C

Call:
(Void) = DulFindFileEnd (context,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(') context (DulFindFileContextType *) The value of context returned by DulFind-
FileEnd. If this is zero, return immediately without error.

(') status (StatusType *) Modified status.
Include files: DulFindFile.h
See Also: Dul library document, DulFindFile(3), DulParseFileName(3).

Support: Tony Farrell, AAO

A.9 DulFitsImgCreate — Define a new Photo image format to support Tcl
images from Fits structures.

Function: Define a new Photo image format to support Tcl images from Fits structures.

Description: This function adds to Tcl/Tk, support for a new Photo image format where the
image can read from Fits files.

The name of the photo image format is “fits”. When you write using this format, a files
file containing a monochrome image of unsigned short integer format is created.

Any fits file with a main data array which can be understood by the fitsio library can be
read.

This image format should be enabled by invoking this routine. Note that it is only available
if Dtcl has been built against Tk 4.0 or later and Dul has been built with CFITSIO support
enabled. You will need to link your application against CFITSIO ($CFITSIO_LIB).

WARNING: As of 3-Jan-2017, no examples of this being used can be found in AAT Instrumentation
software. As a result, this module is not being tested. IF used, please ensure you add
testing.

Language: C

Call:
(void) = DulFitsImgCreate ()



AAO/DUL_SPEC_13 11

Parameters: (“>” input, “!” modified, “W” workspace, “<” output) none
Include File: dul.h

See Also: Dul library document, DulFitsRead(3), photo(n), image(n), wish(n), SdsPhotolm-
ages(n), dtk(n).

Support: Tony Farrell, AAQ

A.10 DulFitsRead — Implements a Tcl Command to read a Fits file into an
Sds structure.

Function: Implements a T'cl Command to read a Fits file into an Sds structure.

Description: This C function implements a Tcl command which will read a FITS file into an
SDS structure. This function is only built if CFITSIO support is enabled when the DRAMA
DUL Library is built. The Tcl command description follows

This command will read an image from a FITS file into an SDS structure. This structure will
be of the form described in the DITS specification for ImageStructure type SDS structures.

If the “-type” option is not used, the file will be converted into an SDS structure of type
USHORT (for historical compatiblity).

This command will only be available on Dtcl if DRAMA has been built with support for CFIT-
SI0 enabled. Dtcl/Dtk will include this command (from DRAMA version 1.5.2) if CFITSIO
support is enabled when Dtcl is built.

The FITS header is also put into the SDS structure in an item named HEADER. This is a
raw array of SDS_CHAR containing the raw FITS Header cards for the primiary header.

Tcl Command Call: <user defined> fitsFile [options]
Tcl Command Parameters: (>) fitsFile (string) The name of the FITS file to read.
Tcl Options:

-type type Specifies the SDS type into which the data should e converted. Possiblities
are byte, short, ushort, int, uint, float, double, int64, natural. “natural” means that
it is converted into the natural format for the file. If this argument is not supplied,
then it is converted into ushort.

Tcl Command Returns: The SDS ID of the structure or ERROR.

Call:
DulFitsRead( clientData, interp, argc, argv)

Parameters: As per C implementation of Tcl commands.

Include Files: tcl.h, dul.h



AAO/DUL_SPEC_13 12

Returns: Tcl OK or Error.

See Also: Dul library document, tclsh(n), DulFitsWrite(3), FITSIO library specification, FITS
specification, Tcl/Tk book.

Language: C

Support: Tony Farrell, AAQ

A.11 DulGetPathW — Get a path to a task, blocking the current action
until it is complete.

Function: Get a path to a task, blocking the current action until it is complete.

Description: This function returns the path to the specified task, setting it up with the
specified buffer sizes. If the action or UFACE context must wait for this to occur, then it
is blocked (using DitsActionWait() or DitsUfaceWait). Such blocking allows the task to
continue processing other actions and UFACE context messages.

In in an action context, action is NOT unblocked when a KICK is received for the action
which invokes it, but the Kick handler may cause the action to be rescheduled and the
action will then be unblocked when the reschedule occurs. This routine will return the
status DUL__UNEXPECTED if this occurs.

Note that if another action/UFACE context calls this or assocaited routines (anything that
invokes DitsActionWait/DitsUfaceWait) while this call is outstanding, then that call must
unblock before this call will be unblocked - i.e. first in last out.

As of DUL version 3.40, we use the new DitsActionTransIdWait() and DitsUfaceTransld-
Wait() instead of the older versions which don’t allow the transaction ID to be specified.
This means we only return when the transaction completes or the timeout occurs, regard-
less of what other events come in. This is normally the required behaviour.

Language: C

Call:
(void) = DulGetPathW (task,node,flags,info,timeout,path,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) task (char *) The name of the task to get a path to.

(>) node (char *) The node the task is on. This is optional. If supplied as 0, then it
is assumed that either the node is specified in the task argument (using stardard
internet format) or the task is known locally.

(>) flags (int) Flags to DitsPathGet. Se that routine for details.

(>) info (DitsPathInfoType *) Use this structure to supply various details for the Get-
Path operation. See DitsPathGet for details



AAO/DUL_SPEC_13 13

(>) timeout (double) If positive, this is a timeout to apply to the get path operation.
(<) path (DitsPathType *) The path is returned here.
(') status (StatusType *) Modified status.

Include files: Dul.h
Prior requirements: Dits must have been initialised.

See Also: Dul library document, DulMessageW(3), DulLoadW(3), DitsPathGet(3), DitsAc-
tionTransIdWait(3), DitsUfaceTransIdWait(3), Dits specification.

Support: Tony Farrell, AAD

A.12 DullntGetArgument — Gets the argument supplied when DullntSig-
nal() was invoked.

Function: Gets the argument supplied when DullntSignal() was invoked.

Description: This call is used when an action handler which was signalled by a call to
DullntSignal(). It must be invoked at least once if DullntSignal() was called with a non-
zero value for the signal argument. It returns the signal value. You can call this routine
multiple times to fetch the same value and no harm is done if you invoke it when the
argument was zero.

This function returns the value obtained with DitsGetSigArg().
Language: C

Call:
(long int) = DullntGetArgument ()

Include files: Dul.h
Prior Requirements: Should only be called from within a DRAMA action handler.

See Also: Dul library document, Dits specification, DullntInit(3), DullntSignal(3), Dullnt-
Tidy(3), DullntGetSigArg(3), DitsSignalByIndexPtr(3).

Support: Tony Farrell, AAD




AAO/DUL_SPEC_13 14

A.13 DullntGetData — Get the client data item associated with a Dullnt-
Type item.

Function: Get the client data item associated with a DullntType item.

Description: Just returns the clientData item associated with a DullntType item when it was
initialised.

Language: C

Call:
(Void *) = DullntGetData (v)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) v (DullntType) The variable describing the action to signal.
Include files: Dul.h

See Also: Dul library document, Dits specification, DullntInit(3), DullntSignal(3), Dullnt-
Tidy(3),

Support: Tony Farrell, AAQ

A.14 DulIntISR — A complete ISR which invokes DullntSignal().

Function: A complete ISR which invokes DullntSignal().

Description: In some cases, the flexibily provided by DullntSignal() is not required (you can
pass an argument and check status). In those cases, this wrap up can be used. See
DitsIntSignal() for full details of the behaviour of this routine.

Note that as DullntType is a pointer type, you can cast this function to any function type
which takes a pointer compatible single argument. This will often be required if using this
routine directly as an ISR.

Language: C

Call:
(void) = DullntISR (v)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) v (DullntType) The variable describing the action to signal.
Include files: Dul.h

See Also: Dul library document, Dits specification, DullntInit(3), DullntSignal(3), Dullnt-
Tidy(3), DitsSignal(3).

Support: Tony Farrell, AAQ




AAO/DUL_SPEC_13 15

A.15 DullntInit — Initialise a DullntType variable for this action.

Function: Initialise a DullntType variable for this action.

Description: A variable of type DullntType is initialised to refer to this action. You can

then pass this variable (which is a pointer type) to an interrupt service routine where you
can use it with a call to DullntSignal() to signal this action. (DullntISR is a wrap up of
DulIntSignal() proving a complete implementation of a simpile ISR which takes a single
parameter).

This DullntType variable can be used with multiple interrupt events, but you must call
DullntTidy() when you are finished with it otherwise you will have a memory leak. Nor-
mally, you would call DullntTidy() before action completion although as long as the action
which calls this routine is not spawnable, you can use the variable across invocations of
the action.

In addition, the DullntSignal() call can be invoked anywhere it is necessary to signal the
action which invoked DullntInit().

This function mallocs a structure. It stores in the structure the task id fetched by Dits-
GetTaskId(), the action index returned by DitsGetActIndex() and the clientData item
supplied by the user.

Language: C

Call:

(Void) = DullntInit (clientData,v,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) clientData (void *) An item to be associated with the DullntType variable, it can
be fetched using DullntGetData().

(<) v (DullntType *) The variable to be initialised.
(1) status (StatusType *) Modified status.

Include files: Dul.h

Prior Requirements: Should only be called from within a DRAMA action handler.

See Also: Dullibrary document, Dits specification, DullntGetData(3), DullntSignal(3), Dullnt-

Tidy(3), DullntISR(3), DullntGetArgument(3), DitsGetTaskId(3), DitsSignal(3), DitsGe-
tActIndex(3).

Support: Tony Farrell, AAQ




AAO/DUL_SPEC_13 16

A.16 DullntSignal — Signal the action which created the DullntType vari-
able.

Function: Signal the action which created the DullntType variable.
Description: Signal the action which created the DullntType variable. The action will resched-
uled with with a reason of DITS_REA_ASTINT.

The integer argument becomes the action argument and can be fetched using DullntGe-
tArgument().

A wrap of this routine is provided by DullntISR(). This wrap up could be used as a
complete ISR whilst DullntSignal(3) allows you to send an argument and check status.

This routine uses DitsEnableTask() to enable correct DRAMA task context, then uses DitsSig-
nal() to signal that task and DitsRestoreTask() to restore the task context.

This routine is designed so that it can be invoked from VxWorks interrupt service routnes,
but it can be used any time it is required to signal an action.

Normally, any errors are reported using ErsRep(), and status is set bad. But when run in a
VxWorks interrupt service routine, the VxWorks routine will be used to report a message
to the console. This is also done if this routine is used in a different VxWorks task from
the task which is being signalled.

Language: C

Call:
(Void) = DullntSignal (v,arg,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) v (DullntType) The variable describing the action to signal.
(>) arg (long int) Argument to be passed to the action.
(') status (StatusType *) Modified status.

Include files: Dul.h

See Also: Dul library document, Dits specification, DullntInit(3), DullntGetData(3), Dullnt-
Tidy(3), DullntISR(3), DullntGet Argument(3), DitsSignalByIndexPtr(3), DitsEnableTask(3),
DitsRestoreTask(3).

Support: Tony Farrell, AAO

A.17 DullntTidy — Tidy up a DullntType structure.

Function: Tidy up a DullntType structure.

Description: Tidys up a DullntType variable by freeing the memory it is using. Note, after
this call you can no longer user this variable.



AAO/DUL_SPEC_13 17

Language: C

Call:
(Void) = DullntTidy (v,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) v (DullntType) The variable describing the action to signal.
(>) v (DullntType) The variable to be initialised.
(') status (StatusType *) Modified status.

Include files: Dul.h

See Also: Dullibrary document, Dits specification, DullntInit(3), DullntGetData(3), DullntSig-
nal(3), DullntISR(3), DullntGetArgument(3), DitsGetTaskId(3), DitsSignal(3), DitsGe-
tActIndex(3).

Support: Tony Farrell, AAO

A.18 DulLoadFacs — Loads the standard facilites and user specified ones.

Function: Loads the standard facilites and user specified ones.

Description: The message facility table file is a C include file is generated by the messgen
program and defines a couple of structures which are normally passed directly to MessPut-
Facility.

This function loads all the standard DRAMA facility tables if required and any the include
files of which are specified in the environment variable DRAMA_FACILITIES.

The DRAMA_FACILITIES environment variable is a space seperated list of facility table
include files. The names can include environment variables in the format DIRECTORY:file
where DIRECTORY is an environment variable which translates to a directory. An example
of the value of the variable might be

“GCAM_DIR:gcam_err_msgt.h GCAM_DIR:vfg_err_msgt.h”
Language: C

Call:
(void) = DulLoadFacs (status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) status (StatusType *) Modified status
Include File: dul.h

External functions used:



AAO/DUL_SPEC_13 18

See Also: Dul library document, DulReadFacility(3), MessPutFacility(3), Mess package spec.

Support: Tony Farrell, AAD

A.19 DulLoadW — Load a task and get a path to it, blocking until it is
complete.

Function: Load a task and get a path to it, blocking until it is complete.

Description: This function returns the path to the specified task, setting it up with the
specified buffer sizes. If the does not existing, then we will try to load it using the supplied
information.

If the action or UFACE context must wait for this to occur, then it is blocked (using
DitsActionWait() or DitsUfaceWait). Such blocking allows the task to continue processing
other actions and UFACE context messages.

In in an action context, action is NOT unblocked when a KICK is received for the action
which invokes it, but the Kick handler may cause the action to be rescheduled and the
action will then be unblocked when the reschedule occurs. This routine will return the
status DUL__UNEXPECTED if this occurs.

Note that if another action/UFACE context calls this or assocaited routines (anything that
invokes DitsActionWait /DitsUfaceWait) while this call is outstanding, then that call must
unblock before this call will be unblocked - i.e. first in last out.

As of DUL version 3.40, we use the new DitsActionTransIdWait() and DitsUfaceTransld-
Wait() instead of the older versions which don’t allow the transaction ID to be specified.
This means we only return when the transaction completes or the timeout occurs, regard-
less of what other events come in. This is normally the required behaviour.

Language: C

Call:
(void) = DulLoadW (taskname,node,PathFlags,info,program,ArgString, Flags, TaskParams,timeout,path,

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)
(>) taskname (char *) The name of the task to get a path to. We use this name to

attempt to find the task before loading it, if we don’t find it.

(>) node (char *) The node the task is on or is to be loaded on. This is optional. If
supplied as 0, then it is assumed that either the node is specified in the taskname

() argument (using stardard internet format) or the task is known locally.
(>) PathFlags (int) Flags to DitsPAthGet. Se that routine for details.

(>) info (DitsPathInfoType *) Use this structure to supply various details for the Get-
Path operation. See DitsPathGet for details

(>) program (char *) Specifies the program to be run. See



AAO/DUL_SPEC_13 19

() DitsLoad () for a more detailed description of how a task may be specified.

(>) ArgString (char *) Arguments to be passed to the loaded task, formatted into a
single character string. See DitsLoad() for a more detailed discussion of task argu-
ments.

(>) Flags (long int *) A flag word controlling some options. In general these options
are system-dependent, at least to some extent. See DitsLoad for more details.

(>) TaskParams (DitsTaskParamType *) Address of a structure containing addi-
tional values used to control the loading of the task. The use of the various fields in
this structure is controlled by the setting of the bits in the Flags argument.

(>) timeout (double) If positive, this is a timeout to apply each operation (loading and
getting path).

(<) path (DitsPathType *) The path is returned here.

(') status (StatusType *) Modified status.

Include files: Dul.h

Prior requirements: Dits must have been initialised.

See Also: Dullibrary document, DulGetPathW(3), DulMessageW (3), DitsLoad(3), DitsPathGet(3),
DitsActionTransIdWait(3), DitsUfaceTransIdWait(3), Dits specification.

Support: Tony Farrell, AAQ

A.20 DulMessageW — Send a message to task, blocking the current action
until it is complete.

Function: Send a message to task, blocking the current action until it is complete.

Description: This function sends a message to a task. The invoking action or UFACE context
is blocked (using DitsActionWait() or DitsUfaceWait). to await the completion of this
message. Such blocking allows the task to continue processing other actions and UFACE
context messages.

In in an action context, the action is NOT unblocked when a KICK is received for the action
which invokes it, but the Kick handler may cause the action to be rescheduled and the
action will then be unblocked when the reschedule occurs. This routine will return the
status DUL__UNEXPECTED if this occurs.

Note that if another action/UFACE context calls this or associated routines (anything that
invokes DitsActionWait/DitsUfaceWait) while this call is outstanding, then that call must
unblock before this call will be unblocked - i.e. first in last out.

As of DUL version 3.40, we use the new DitsActionTransIdWait() and DitsUfaceTransld-
Wait() instead of the older versions which don’t allow the transaction ID to be specified.
This means we only return when the transaction completes or the timeout occurs, regard-
less of what other events come in. This is normally the required behaviour.



AAO/DUL_SPEC_13 20

MsgOut and ERS messages are forwarded (as of version 3.55).

Warning 1: When run in UFACE context when outside the DRAMA message receive loop (say
DitsMainLoop() etc. has not been called) then DitsGetArgument() will allways be nil on
return from this routine. In other cases (actions content and UFACE context in reponse to
a message) on return from this routine, DitsGetArgument() have the return argument if
any.

The inconsistency is due to a potential resource leak. Please see DulMessageWArg() to
avoid this problem.

Warning 2: If the target action is expected to return a large argument structure, then this
function may be quite inefficent as it does an SdsCopy on the structure. It is suggested
that normal resheduling be used in such cases.

Language: C

Call:
(void) = DulMessageW (type,path,name,argument,timeout,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) type (DitsMsgType) The type of message to send. One of

DITS_MSG_KICK Kick an action

DITS_MSG_0BEY Start an action
DITS_MSG_GETPARAM | Get a parameter value
DITS_MSG_SETPARAM | Set a parameter value
DITS_MSG_CONTROL | Dits control message
DITS_MSG_MONITOR | Dits parameter monitor message

See DitsInititateMessage for full details of each message type.

(>) path (DitsPathType *) The path to the task as returned by DitsGetPath or Dul-
GetPathW.

(>) name (char *) The name associated with the message. Depends on message type
but for OBEY and KICK, this is the action name.

(>) argument (SdsIdType) An argument to the message. This should be an Sds id.
See DitsGetArgument and DitsPutArgument for more details on action arguments.

(>) timeout (double) If positive, this is a timeout to apply to the obey operation.
(') status (StatusType *) Modified status.

Include files: Dul.h
Prior requirements: Dits must have been initialised.

See Also: Dullibrary document, DulGetPathW(3), DulLoad W (3), DitsInitiateMessage(3), Dit-
sActionWait(3), DitsUfaceWait(3), DulMessageWArg(3), Dits specification.



AAO/DUL_SPEC_13 21

Support: Tony Farrell, AAQ

A.21 DulMessageWArg — Send a message to task, blocking the current
action until it is complete.

Function: Send a message to task, blocking the current action until it is complete.

Description: This function sends a message to a task. The invoking action or UFACE context
is blocked (using DitsActionWait() or DitsUfaceWait). to await the completion of this
message. Such blocking allows the task to continue processing other actions and UFACE
context messages.

In in an action context, action is NOT unblocked when a KICK is received for the action
which invokes it, but the Kick handler may cause the action to be rescheduled and the
action will then be unblocked when the reschedule occurs. This routine will return the
status DUL__UNEXPECTED if this occurs.

Note that if another action/UFACE context calls this or associated routines (anything that
invokes DitsActionWait /DitsUfaceWait) while this call is outstanding, then that call must
unblock before this call will be unblocked - i.e. first in last out.

Unlike DulMessageW/(), the return argument (if any) is available in the argOut parameter.
The user must call SdsDelete() and SdsFreeld on this when finished with it. (This allows
the argument to be accessed in cases where DulMessageW () can’t get at it.

As of DUL version 3.40, we use the new DitsActionTransIdWait() and DitsUfaceTransld-
Wait() instead of the older versions which don’t allow the transaction ID to be specified.
This means we only return when the transaction completes or the timeout occurs, regard-
less of what other events come in. This is normally the required behavior.

MsgOut and ERS messages are forwarded (as of version 3.55).

Warning: If the target action is expected to return a large argument structure, then this
function may be quite inefficient as it does an SdsCopy on the structure. It is suggested
that normal rescheduling be used in such cases.

Language: C

Call:
(void) = DulMessageWArg (type,path,name,argument,timeout,argOut,status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) type (DitsMsgType) The type of message to send. One of



AAO/DUL_SPEC_13 22

DITS_MSG_KICK Kick an action

DITS_MSG_OBEY Start an action
DITS_MSG_GETPARAM | Get a parameter value
DITS_MSG_SETPARAM | Set a parameter value
DITS_MSG_CONTROL | Dits control message
DITS_MSG_MONITOR | Dits parameter monitor message

See DitsInititateMessage for full details of each message type.

(>) path (DitsPathType *) The path to the task as returned by DitsGetPath or Dul-
GetPathW.

(>) name (char *) The name associated with the message. Depends on message type
but for OBEY and KICK, this is the action name.

(>) argument (SdsIdType) An argument to the message. This should be an Sds id.
See DitsGetArgument and DitsPutArgument for more details on action arguments.

(>) timeout (double) If positive, this is a timeout to apply to the obey operation.

(<) argOut (SdsIdType *) The returned argument is written here. If a null argument
is supplied, the behaviour is as per DulMessageW(). Otherwise, the SDS ID of any
output argument associated with the reply is written here. The caller will be respon-
sible for calling SdsDelete() and SdsFreeld() on this.

(') status (StatusType *) Modified status.

Include files: Dul.h
Prior requirements: Dits must have been initialised.

See Also: Dullibrary document, DulGetPathW(3), DulLoad W (3), DitsInitiateMessage(3), Dit-
sActionWait(3), DitsUfaceWait(3), DulMessageW (3), Dits specification.

Support: Tony Farrell, AAO

A.22 DulParseFileName — Parse a file specification using defaults and search
paths.

Function: Parse a file specification using defaults and search paths.
Description: This routine is meant to parse file specifications using defaults and search paths
in order to return the name of a file to be created.

Two file specifications are supplied, the “filespec” to find and a “defaultspec”. Any com-
ponents not supplied as part of the filename are taken from corresponding parts of de-
faultspec.

File specifications are made up of one of the following formats



AAO/DUL_SPEC_13 23

DIRECTORY_SPEC:name.type
DIRECTORY_SPEC/name.type

There are considered to be three components . The first component is the “DIRECTO-
RY_SPEC”, which specifies the directory in which to find the file. If neither the “filespec”
or “defaultspec” specify a “DIRECTORY_SPEC”, then the current default directory is used.

The second component is “name”. This consists of the string between the the last slash
(or the colon) and the last period. If not supplied in “defaultspec”, then “filespec” must
supply this component.

The third component is “type”. This consists of the string between the the last period and
the end of the string. If not supplied in either “filespec” or “defaultspec”, then nothing is
supplied. Note that if this component is supplied under Unix/VxWorks in “defaultspec”,
then it is not possible to select a file which does not have a type. This is required to get
the defaulting effect required in most cases.

Both “defaultspec” and “filespec” as first processed through DulTranslate to translate en-
vironment variables or logical names represented using formats accepted by DulTranslate.
See DulTranslate for more details.

Unix/VxWorks Notes: If the directory specification ends in a colon then “DIRECTORY_SPEC”
is considered to be an environment variable which will be translated. The result of this
translation may be a colon separated list of directories. The resultant file specification will
be in the first of these directories. For these operating systems, you may also specify this
colon separated list directly.

VMS Notes: No longer supported (April 2018).
Language: C

Call:
(Void) = DulParseFileName (fileSpec,defaultSpec,flags,resultSize, result,status);

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) fileSpec (char *) The specification of the file to find. See above for details.

(>) defaultSpec (char *) The default specifications for the varoius components not sup-
plied in in fileSpec. For components are not supplied here, the corresponding com-
ponents in current_directory:*.* is used under VMS and current_directory:* under
Unix/VxWorks. This argument is optional and my be specified as a null pointer.

(>) flags (int) A mask of flags. Currently, none are defined. Just set to 0.

(>) resultSize (unsigned int) Size of the result string

(<) result (char *) The resultant file specification.

(1) status (StatusType *) Modified status. Will be DUL__STRLEN if the result string
is too small. Other errors are possible from subsidiary routines.

Include files: DulFindFile.h

See Also: Dul library document, DulFindFile(3), dparsefile(1).



AAO/DUL_SPEC_13 24

Support: Tony Farrell, AAQ

A.23 DulReadFacility — Reads a message facility table (_msgt.h) file

Function: Reads a message facility table (_msgt.h) file and dynamically adds the facility to
the current program.

Description: The message facility table file is a C include file is generated by the messgen
program and defines a couple of structures which are normally passed directly to MessPut-
Facility. This normally means all facilities must be known at compile type. This function
reads such an include file and creates the required structures dynamically. It then makes

this facility known using MessPutFacility This allows facilities not known at compile time
to be added.

Language: C

Call:
(void) = DulReadFacility (filename, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) filename (const char *) Name of the message facility table file.

(>) status (StatusType *) Modified status
Include File: dul.h

External functions used:

MessPutFacility | Mess | Put a facility

ErsRep FErs Report an error

strlen Crtl | return the length of a string

strepy Crtl | copy one string to another

malloc Crtl | allocate memory

fopen Crtl | Open a file

fgets Crtl | Read a line from a file

ftell Crtl | Return the current position in a file
fseek Crtl | Goto a positon in a file

fclose Crtl | Close a file

See Also: Dul library document, MessPutFacility(3), Mess package spec.

Support: Tony Farrell, AAQ




AAO/DUL_SPEC_13

A.24 DulTranslate — Translate environment variables and logical names in

strings

Function: Translate environment variables and logical names in strings using the Unix shell

style.

Description: Given a string, translate any environment variables and return the result. The
standard formats normally accepted by unix shells, such as $NAME, are accepted. When
the former form is used, the name is terminated by any character except a period, comma,

underscore, digit or alphabetic character.

Language C
Call:

(void) = DulTranslate (string, outlen, outstr, status)

Parameters: (“>” input, “!” modified, “W” workspace, “<” output)

(>) string (const char x) The string to translate

(>) outlen (int) Length of output buffer - outstr.

(<) outstr (char *) Place to write the translated string.

(') status (StatusType *) Modified status

Include File: dul.h

External functions used:

isalpha
isdigit
malloc
free
strlen
getenv

CRTL
CRTL
CRTL
CRTL
CRTL
CRTL

Indicates if a character is alphabetic.
Indicates if a character is numeric.

Allocate memory.

Free memory.

Return the length of a string.

Return the value of an environment variable/

External values used: None

Prior requirements: None

See Also: Dul library document, DulParseFileName(3), DulFindFile(3).

Support: Tony Farrell, AAO




AAO/DUL_SPEC_13 26

B Programs

This section details various programs avaiable in the Dul sub-system.

B.1 xditscmd — A simple X Windows based interface to DRAMA.

Function: A simple X Windows based interface to DRAMA.

Synopsis: xditsemd [xt options] [options] [task[@node]]
Under VMS, individual strings should be enclosed in quotes to preserve case (the default is
to convert to lower case).

Description: This program provides a X-Windows/Motif user interface to a Dits tasks.
In addition to displaying the results of normal Dits commands, this program will display
any image structures returned by commands in a popup image window.

Command arguments:

task The initial name of the task to send the message to. If a remote task use the format
task@node, where node is the internet node name of the machine the task is running
on. This value can also be set or be changed once the program is running.

Options: Only the -b and -n options are not settable after the program is running.

xt options Any options accepted by the X-Windows toolkit. See XtApplInitialise(3) for
details.

-b size Size is the total message buffer size. Default 615000 This size should be about
20% bigger then that required by the values specified by the -m option. This option
cannot currently be set once the program is running.

-m nl:n2:n3 Sets message buffer sizes for the connection.

nl | Messages bytes allowed for message to be sent
n2 | Messages bytes allowed for return messages
n3 | Number of return messages which may occur

Default is 1000:600000:1 which should be sufficient for most tasks. This value can also be
set from the options pulldown, buffer menu.

-n name The name this task should register itself as. Default is the name of the top
level widget (which defaults to Xditscmd but can be set by the -name Xt option).
This option may be required if you intend to have several versions of this program
outstanding at one time.

-0 Send obey message (default).
-k Send kick message.

-s Send set message.



AAO/DUL_SPEC_13 27

-G Send get message.
-c Send control message.
-p Send monitor message.

-z When supplied, the task name and message type are set using the options pull down,
configuration item instead of on main screen. This reduces the space used on the
screen.

-f list Specifies a space separated list which is a list of message facility files (_msgt.h files).
These facilities are made known to this program. These facilities are in addition to
those added by the facilities resource.

Main Window: The Menu Bar contains a File Menu, Commands Menu and Options Menu.
The file menu contains the “Exit” button which will cause the program to exit.

The commands menu contains three items- Lose Path => This button which will cause
the path to the current task to be closed. Delete Task(polite) => Causes the current task
to be deleted in a polite way. Delete Task(force) => Causes the current task to be delete
forcefully.

The Options menu contains four or five items-

Buffers Pop up the buffers dialog which allows you to
set buffer sizes

Configuration | Only present if the option was selected. It
Pops up the configuration dialog allowing you
to set the task name, node name and message
type.

Miscellaneous | Pop up the miscellaneous dialog which allows
you to set case conversion options and timeouts
on various operations.

Load Pop up the load program dialog which allows
you to load a program using the imp master
task. Image Test => Tests the imaging system
by creating a test image and displaying it.

4 2

B/

The first item on the main window is a scrolled list of messages output by Dits.

Next we have the optional configuration section. If the “-z” option was supplied, this is

instead available in the “options” pull down, “configuration” item. It allows you to set
the task name, node name and message type for the next message to be sent. The clear
button causes the node and task name entries to be cleared.

Next we have the command area. First a list of previous commands is displayed, followed
by the command entry area where you can type commands (action names followed by
argument lists). The arrow keys can be used to scroll back through the list of commands.
Hitting return will cause the current command to be executed. You can have multiple
commands to one or more tasks outstanding at any one time.



AAO/DUL_SPEC_13 28

Imager Window: The imager window is a simple image display system. It is displayed
whenever a message from Dits contains an image structure as its argument. Note that it
takes some time to scale and display an image.

The Menu Bar contains a File Menu and Options Menu. The file menu contains the
“Close” button which will cause the imager window to be closed (releasing resources) and
the “Refresh” button, which rescales and rewrites the image. The file menu also contains

items which allow you to write the current image to a file and retrieve it from a file (using
SdsWrite()/SdsRead())

The Options menu contains “Scaling” button, which activates the Scaling popup. This
allows you to set the scaling of the image. The “From Data” button sets the scaling to
the image low and high values. A high value of zero causes the high value to be set to the
data high value automatically on each redisplay. The scaling low and high values can be
any double size floating point values.

The imager window scroll bars allow you to position the image (which is not zoomed either
in or out) within the output window. If the window size exceeds the image size, the scroll
bars are ignored.

Clicking a mouse button anywhere in the image causes the position within the image and
the pixel value at the position, to be displayed at the top of the window.

Note that if you iconify the imager window, it will be automatically deiconified when a
message containing an image structure is received.

When you are finished with the imager window, release resources by closing the window
using either the file menu close button or the window manager close button. Performance
will be improved if the server enables backing store by default.

X defaults: XDITSCMD uses the standard X-Windows Toolkit resource system. Fallback re-
sources are provided to ensure the program works even if a resource file is not found. The
file “xditscmd.ad” is the source of the fallback resources and can be used as a guide for
user modifications. It is found in the DUL_DIR directory.

To create a user specific resources, create a file named Xditscmd and set the environment
variable XUSERFILESEARCHPATH to the value “directory/%N” where “directory” is the direc-
tory containing this file. (Under VMS, create a file named “xditscmd.dat” in the directory
pointed to by the logical name “DECW$USER_DEFAULTS”

Of particular interest are the application specific resources (those not related to a particular
widget). The available values are

nodeName A text string which specifies the default node which the target task resides
on or the node on which to load the specified program (load dialog). Default is the
current node.

taskName A text string which specifies the name of the target task. No default is
supplied.

program A text string which specifies the name of the program to load (load dialog). No
default is supplied.

processName A text string specifing the name to be given to the created process (load
dialog). No default is supplied.



AAO/DUL_SPEC_13 29

logFile If logging is to be written to a log file, the name of the log file. The default is
xditscmd.log

globalBufferSize The size of the global buffer for Xditscmd. See DitsInit() for details
(buffers dialog). Default is 605000.

messageSize An unsigned integer. The Normal size of messages sent to other tasks. See
DitsGetPath() for details. Default is 1000.

maxMessages An unsigned integer. The maximum number of messages to be queued.
See “DitsGetPath()” for details (buffers dialog). Default is 1.

ReplySize An unsigned integer. The normal size of messages sent from other tasks to
this task. See DitsGetPath() for details. (buffers dialog) Default is 600000.

maxReplies An unsigned integer. The maximum number of replies to be queued. See
DitsGetPath() for details (buffers dialog). Default is 1.

pathTimeout An unsigned integer. If timeouts are enabled on get path operations then
this is the the default timeout (misc dialog). Default 100.

actionTimeout An unsigned integer. If timeouts are enabled on action messages then
this is the the default timeout (misc dialog). Default 100.

taskNodeCase One of the values UPPER, LOWER or NONE indciating the case conversion
to be applied to task and node names (misc dialog). Default is NONE.

actionCase One of the values UPPER, LOWER or NONE indciating the case conversion to be
applied to action names (misc dialog). Default is NONE.

logging A logical value indicating if logging is to be enabled (misc dialog). Default is
False.

logtoFile A logical value indicating that if logging is enable, then it should be copied to
the log files specified by the logFile resource value. (misc dialog). Default is False.

pathTimeoutEnable A logical to enable or disable timeouts on get path operations
(misc dialog). Default is False.

actionTimeoutEnable A logical to enable or disable timeouts on normal messages (misc
dialog). Default is False.

messageType Indicates the initial message type (main window/config dialog). One of
OBEY, KICK, SET, GET, CONTROL or MONITOR. Default is OBEY.

configDialogEnable Indicates if the config dialog should be enabled. If False, then items
normally displayed in the config dialog are displayed on the main menu. If true, the
config dialog button is added to the options menu. If False, then it can be overriden
by the -z option. Default False.

facilities A space separated list of message table (_msgt.h) files to be loaded on startup.

See Also: ditscmd(1), XtApplnitialise(3), Dits specification, X-Windows documentation, X-
Windows toolkit documentation, Motif documentation

Language: C

Support: Tony Farrell, AAQ




AAO/DUL_SPEC_13 30

B.2 dfindfile — Find a file using search paths, defaults and wildcards.

Function: Find a file using search paths, defaults and wildcards.

Synopsis: dfindfile [options] file [file...]

Description: This program will return the a name which can be used to open given files, after
the application of defaults, wildcards and search paths. For example,
dfindfile “FRED_DIR:*.c”
dfindfile -default “*.c” FRED_DIR:

will both search the envionment variable/logical name search path FRED_DIR for all .c
files and return names that be be used in an open statement. Under VMS, a search path
is a logical name directorysearch path. Under UNIX/VxWorks, a search path is a colon
separated list of directory names (in the format used by the PATH environment variable)

For application of defaults, each filename is broken up into three components, the directory
spec, the filename and the file type. If a component is not supplied by the file specification,
then it is taken from the default specification, if supplied.

Wildcards appropiate to the machine on which the program is being run can be specified.
Note the requirement for quotes around anything which may be interpeted by the shell.
Options;

-default name Specifies defaults file name components.

-oneonly Return only the first file found. By default, all files which match the specifica-
tion are returned.

-nowild Disallow wildcards.

-impdir If a directory is specified using the <dir>:<file> approach, with <dir> an en-
vironment variable name, then return the original <dir> specification after confirm-
ing it can be translated. This allows us to determine a directory spec appropriate
IMP _Master to use. If you don’t use this flag, you may find IMP _Master has problems
with the length of the translated environment variable.

See Also: Dul library document, dparsefile(1), DulFindFile(3).

Author: Tony Farrell, AAQ

B.3 dparsefile — Parse a file name using defaults and search paths.

Function: Parse a file name using defaults and search paths.

Synopsis: dparsefile [options] file [file...]



AAO/DUL_SPEC_13 31

Description: This program will return the a name which can be used to create the given files,
after the application of defaults and search paths. For example,

dparsefile “FRED_DIR:jack.c”
dparsefile -default “x.c” FRED_DIR:jack

will both return a name which will put the file jack.c into the first part of the search path
defined by the FRED_DIR search path.

Under VMS, a search path is a logical name directorysearch path. Under UNIX/VxWorks,
a search path is a colon separated list of directory names (in the format used by the PATH
environment variable)

For application of defaults, each filename is broken up into three components, the directory
spec, the filename and the file type. If a component is not supplied by the file specification,
then it is taken from the default specification, if supplied.

Note the requirement for quotes around anything which may be interpeted by the shell.
Options;

-default name Specifies defaults file name components.
See Also: Dul library document, dfindfile(1), DulParseFile(3).

Author: Tony Farrell, AAO




AAO/DUL_SPEC_13 32

References

[1] Tony Farrell, AAO 05-Oct-1994, DRAMA C++ Interface. Anglo-Australian Observatory
Draft DRAMA Software document.

[2] Tony Farrell, AAO. 18-Feb-1993, A portable Message Code System. Anglo-Australian Ob-
servatory DRAMA Software Document number 6.

[3] Tony Farrell, AAO. 29-Apr-1995, Dits Specification Anglo-Australian Observatory
DRAMA Software Document number 5.



