
ANGLO-AUSTRALIAN OBSERVATORY AAO/DRAMA_MAKE_10
DRAMA Software Report 10
Version 1.0

Tony Farrell
14-Aug-2000

Creating Makefiles for Drama programs

Contents

1 Introduction 5

2 X11 Configuration Management 5

3 DRAMA Configuration 6

4 Overview 7
4.1 The configuration section . 7
4.2 Rules, Objects and Sources . 8
4.3 The All target . 9
4.4 The includes target . 9
4.5 Include file generate . 10
4.6 An Object library target . 10
4.7 A DRAMA program target . 10
4.8 The Release Targets . 11
4.9 Enabling the release . 12
4.10 DramaDirs . 12
4.11 Using it . 13

4.11.1 Targeting a Sun/Sparc . 13
4.11.2 Targeting a VxWorks 68020 . 14
4.11.3 Targeting VAX/VMS . 14

5 How it works 14
5.1 VMS Tricks . 15

6 Writing dmakefiles 16

7 Local configuration 16

A Programs 18
A.1 dmkmf — Generate a Makefile from a dmakefile. 19

AAO/DRAMA_MAKE_10 2

B Imake Functions 20
B.1 File specification . 20

B.1.1 Exe . 20
B.1.2 Obj . 20
B.1.3 Lib . 21

B.2 System Configuration . 21
B.2.1 VmsOnly . 21
B.2.2 NotVms . 21
B.2.3 UnixOnly . 22
B.2.4 NotUnix . 22
B.2.5 EmbeddedOnly . 22
B.2.6 NoEmbedded . 22
B.2.7 StarlinkOnly . 23
B.2.8 NoStarlink . 23
B.2.9 MotifOnly . 23
B.2.10 NoMotif . 23
B.2.11 TclOnly . 24
B.2.12 NoTcl . 24
B.2.13 TkOnly . 24
B.2.14 NoTk . 25
B.2.15 CPlusPlusOnly . 25
B.2.16 NoCPlusPlus . 25
B.2.17 FortranOnly . 25
B.2.18 NoFortran . 26

B.3 Drama Libraries Macros . 26
B.3.1 NormalCRules . 26
B.3.2 NormalRules . 26
B.3.3 JavaRules . 27
B.3.4 AnsiC . 27
B.3.5 AnsiCFull . 27
B.3.6 TraditionalC . 27
B.3.7 ExtraCWarnings . 28
B.3.8 USERCCOPTIONS . 28
B.3.9 AnsiCC . 28
B.3.10 AnsiCCFull . 28
B.3.11 USERCCCOPTIONS . 29
B.3.12 IDir . 29
B.3.13 LinkLibDir . 29
B.3.14 DRAMA_INCL . 30
B.3.15 TCLTK_INCL . 30
B.3.16 INCLUDES . 30
B.3.17 Define . 30
B.3.18 StringDefine . 31
B.3.19 DEFINES . 31
B.3.20 JUSEROPTIONS . 31
B.3.21 JCLASSPATH . 32

AAO/DRAMA_MAKE_10 3

B.3.22 JDIRFLAG . 32
B.3.23 JavaPackageClassesMacro . 32

B.4 Objects, Libraries and Executables . 33
B.4.1 CObject . 33
B.4.2 FortranObject . 33
B.4.3 ObjectLibrary . 33
B.4.4 NormalProgramTarget . 34
B.4.5 DramaProgramTarget . 34
B.4.6 CPPProgramTarget . 35
B.4.7 DramaCPPProgramTarget . 35
B.4.8 JavaProgramTarget . 36
B.4.9 JavaPackageTarget . 36

B.5 Lex and Yacc . 37
B.5.1 YaccObject . 37
B.5.2 LexObject . 37
B.5.3 YaccObjectFixed . 38
B.5.4 LexObjectFixed . 38
B.5.5 YACC_LIB . 39
B.5.6 LEX_LIB . 39

B.6 Release and enabling targets . 39
B.6.1 DramaReleaseCheck . 40
B.6.2 DramaReleaseJavaCheck . 40
B.6.3 DramaReleaseCommon . 40
B.6.4 DramaReleaseScriptTo . 41
B.6.5 DramaReleaseTargetTo . 41
B.6.6 DramaReleaseLibTo . 41
B.6.7 DramaReleaseCommonTo . 42
B.6.8 DramaReleaseTarget . 42
B.6.9 DramaReleaseJava . 42
B.6.10 DramaReleaseJavaTo . 43
B.6.11 DramaReleaseJavaPackage . 43
B.6.12 DramaReleaseDramaStart . 43
B.6.13 DramaEnable . 44

B.7 Include file generation . 44
B.7.1 ErrorIncludeFiles . 44
B.7.2 FortranErrorIncludeFile . 44
B.7.3 SdsIncludeFile . 45

B.8 General Functions and Macros . 45
B.8.1 DramaCheckTarget . 45
B.8.2 SimpleDependency . 45
B.8.3 DummyTarget . 46
B.8.4 RunCurrentDir . 46
B.8.5 STARLINK_DIR . 46
B.8.6 TARGET . 46
B.8.7 HOST . 47
B.8.8 DramaDirs . 47

AAO/DRAMA_MAKE_10 4

B.9 Library Macros . 47
B.9.1 LIB_MOTIF . 47
B.9.2 LIB_NET . 48
B.9.3 FCLIBS . 48
B.9.4 LIB_TCL . 48
B.9.5 LIB_TK . 48

B.10 Drama Library Macros . 49
B.10.1 DRAMA_LIBS . 49
B.10.2 LIB_DITS . 49
B.10.3 LIB_DRAMAUTIL . 49
B.10.4 LIB_GIT . 49
B.10.5 LIB_DTCL . 50
B.10.6 LIB_ERS . 50
B.10.7 LIB_IMP . 50
B.10.8 LIB_MESSGEN . 50
B.10.9 LIB_SDS . 51

C C compiler pre-processor Macros 51
C.1 Sun target . 51
C.2 VxWorks target. 51
C.3 Vms targets . 51

D The dmakefile for Gcam 52

Revisions:

V0.0 19-Jul-1993 Original Version.

V0.1 04-Dec-1995 General update. Added Fixed Lex/Yacc macros C++ stuff, DramaCheckTarget
and local configuration files.

V1.0 14-Aug-2000 Added Java support targets.

V1.0.1 25-Aug-2000 Add JDIRFLAG macro and add DramaJavaReleaseTo macro. These combine to
support Jeremy’s style of java developement.

AAO/DRAMA_MAKE_10 5

1 Introduction

DRAMA is a complex system which is available on machines with various architectures. Over
the years, various techniques have arisen to help write portable code and DRAMA takes
advantage of many of these.

Unfortunately, after writing your portable code, you often find that you have to go to some
trouble to to actually build it. The preferred way is to use make. Normally, a makefile exists
for each system being built. This makefile must be configured for the machine on which the
software is being built. This works well for simple systems but causes problems for larger
systems.

The most obvious large system in the style of DRAMA is the X11 windowing system. X11 is
considerably larger then DRAMA and like DRAMA is arranged in a number of sub-system.
Despite its size, it is remarkable for its portability. This author was surprised that after obtaining
a copy of X11, he was able to build it by simply going to the appropriate directory and typing

make World

In addition, on a probably configured X11 system, it is possible to grab almost any public
domain X11 program from the internet and build it with only-

xmkmf

make

Over time, I investigated the X11 configuration system to determine if it is suitable for use in
DRAMA and decided that the basic technique was what was required. This document first
has a quick look at what is done in X11. It then describes the DRAMA approach and how to
use it.

2 X11 Configuration Management

[1] describes the X11 configuration system. The basic principles it follows are-

� Use existing tools to do the build (e.g. make) where possible; writing complicated new
tools simply adds to the amount of software that has to be bootstrapped.

� Keep it simple. Every platform has a different set of extensions and bugs. Plan for the
least common denominator by only using the core features of known tools; don’t rely on
vendor-specific features.

� Providing sample implementations of simple tools that are not available on all platforms
(e.g. a BSD-compatible install script for System V) is very useful.

� Machine-dependencies should be centralized to make reconfiguration easy.

� Site-wide options (e.g. default parameters such as directory names, file permissions, and
enabling particular features) should be stored in only one location.

AAO/DRAMA_MAKE_10 6

� Rebuilding within the source tree without losing any of the configuration information must
be simple.

� It should be possible to configure external software without requiring access to the source
tree.

The approach used by X11 is to use existing tools (make and cpp), and a very simple program
called imake (written by Todd Brunhoff of Tektronix). Imake uses the C pre-processor to com-
bine a common template file , site and machine specific files , and source files known Imakefiles
to produce a Makefile.

Each sub-system (library/package etc.) contains a file named Imakefile. Imake is run on Imake-
file to produce a Makefile configured for the target machine. Imake is usually run using a simple
script interface called xmkmf (For X MaKe MakeFile).

Below is the Imakefile used to build a manual page browser named xman (written by Chris
Peterson of the MIT X Consortium, based on an implementation for X10 by Barry Shein):

DEFINES = -DHELPFILE=\"$(LIBDIR)$(PATHSEP)xman.help\"

LOCAL_LIBRARIES = $(XAWLIB) $(XMULIB) $(XTOOLLIB) $(XLIB)

SRCS = ScrollByL.c handler.c man.c pages.c buttons.c help.c menu.c search.c \

globals.c main.c misc.c tkfuncs.c

OBJS = ScrollByL.o handler.o man.o pages.o buttons.o help.o menu.o search.o \

globals.o main.o misc.o tkfuncs.o

INCLUDES = -I$(TOOLKITSRC) -I$(TOP)

ComplexProgramTarget (xman)

InstallNonExec (xman.help, $(LIBDIR))

Lines such as DEFINES = ... will be copied directly to the resulting Makefile. The function syle
lines, such as ComplexProgramTarget are C pre-processor macros. This particular one will be
translated into the Make lines required to produce the program xman.

3 DRAMA Configuration

In addition to the problems faced by X11, DRAMA faces a couple of extra problems -

� The X11 configuration system only works on Unix and similar systems. DRAMA is
expected to work on VMS, which is sufficiently different in its command structure to
cause problems

� DRAMA will also be using in embedded systems, such as VxWorks. This means we
need to be able to configure and build software which will run on a different machine then
the machine we are building it on.

� DRAMA uses a release version management system which is designed to ensure the cor-
rect versions of sub-systems are used, allowing reversion to previous versions if necessary.

AAO/DRAMA_MAKE_10 7

My approach to solving these problems was to rewrite the X11 configuration files (which set
Project, Site and Target specific information) in a way appropriate to DRAMA. In addition, a
new driver script - dmkmf (for Drama MaKe MakeFile) was written. In addition to running imake
with a different set of configuration files, dmkmf also accepts options which allows Makefiles to
be built for targets other then the machine on which it is being run. This allows for example,
the generation of Makefiles for VxWorks targets on a sun host.

In addition, if you specify a VMS target, you can generate descrip.mms files suitable for use
with the VMS MMS command.

4 Overview

Appendix D contains an example of a dmakefile. This one for a Generic Camera Package. This
particular example is a bit more complex then the minimum necessary, which does not require
the release targets. Netherless, it is a good example of how many dmakefiles for DRAMA
programs will be written. We will work though this file and how to use it.

At this stage, I expect you to be somewhat familiar with make or a similar program, such as
MMS.

First comments. You can you the standard C comment convention - * comment *\. Comments
made this way will not appear in the resulting Makefile. Alternately, comments introduced by
a “#” on the first position of a line, indicating that the entire line is a comment, will be copied
to the Makefile generated from this file.

Note that unless otherwise noted, where I refer to make, I also mean MMS under VMS. Likewise
for Makefile and descrip.mms.

4.1 The configuration section

This first part of the file is the part between the special comments #BeginConfg and #EndConfig

-

#BeginConfig

RELEASE=t0_1 /* Release of this system */

SYSTEM=gcam /* System name (for release */

EmbeddedOnly(TWODF=/home/aaossc/tjf/scratch/2dF)

INCLUDES= DramaIncl EmbeddedOnly(-I$(TWODF)/drivers)

USERCCOPTIONS = AnsiCFull() /* Enable Full Ansi C */

#EndConfig

Everything on the left an an equals sign will become make macros.

The first two lines (RELEASE= and SYS=) set the release (or version) number (t_1) and the
system name (gcam). Both the release number and system name must be a suitable as file names
on the most restrictive system to which this package will be ported. As a result, use only lower

AAO/DRAMA_MAKE_10 8

case letters (which avoids unix/vms file name compatibility problems) and only use underscores
(_) as word separators. These two lines are only needed if you later specify one of the release,
enable or dramadirs target function (which we will mention later).

The rest of the configuration section will be make macro definitions, particularly macros used
by the rules defined by the project. For example, INCLUDES and USERCCOPTIONS are used by the
definition of C compilation rule. TWODF is used by INCLUDES. They are put in the configuration
section since things put here are placed at the beginning of the resulting Makefile, ensuring that
macro definitions occur before the macro is used.

The third line specified a make macro definition which is only used when you build a make file di-
rected at an embedded system. The Make macro will be TWO=/home/aaossc/tjf/scratch/2dF.
By wrapping the definition in the function EmbeddedOnly(), the line is only output when you
are building an embedded system. Similar macros exist for a number of other possibilities.

The macro INCLUDES specifies the directories in which to search for include files during C com-
pilations. Note that the format -Idir will work even on VMS systems. This is due to the way
the C compiler is run by the resulting descrip.mms file. In this case, we only use that format
for the stuff in the EmbeddedOnly() function.

The function DramaIncl will insert the appropriate line to compile using the DRAMA include
files1.

You can use the function IDir() to add other directories. It considers its argument to be either
a logical name (VMS) or a environment variable (unix) pointing to a directory which you wish
added to the include file list.

The Make macro USERCCOPTIONS is used to add extra options to the cc command. In this case,
the function AnsiCFull() is used, which causes the compiler to use strict Ansi-C (if possible).
What this translates to depends on the system and compiler in use. You could also use the
function AnsiC() for ansi C but not strictly, or TraditionalC() for traditional (K&R) C.

4.2 Rules, Objects and Sources

The line below enables the normal set of Make rules for compiling C programs. All dmakefiles
should have one, but it is made explicit so that they can be overridden if necessary.

NormalRules()

Next we specify some make macros to be used later in the program -

OBJECTS = Obj(gcam) Obj(gcamcentroid) Obj(vfg)

EmbeddedOnly(GRAB_OBJS = Obj($(TWODF)/drivers/grabberDrv)

Obj($(TWODF)/drivers/pixel_box))

SRC1= gcam.c gcamcentroid.c vfg.c

1Under unix, this translates to ‘$GIT_DIR/git_cc‘. Under VMS, it translates to -IDRAMA_INCLUDES .

AAO/DRAMA_MAKE_10 9

As we will see later on, OBJECTS is the list of objects which make up the gcam system library.
The name OBJECTS is not significant, it is just what is specified later. All object files are specified
using the Obj() function. This produces the correct name for the corresponding object file on
the target machine 2.

GRAB_OBJS is used later, when the target is an embedded system. Note that this need to be on
the one line in the actual file, since you cannot break function arguments over more then one
line.

Next we have the definition of the list of source files. Each file should define make macros of the
form SRCn=, where n is 1 to 5. The SRCn make macros are used in a target named depend. When
you do make depend, the source file lists are run though the makedepend program, which adds
a list of include file dependencies to the makefile. This will ensure that make correctly updates
targets when include files are changed. Each SRCn macro should be restricted to about 2 lines
of file names. When SRC1 fills about two lines, start with SRC2 etc.

4.3 The All target

The first target in a Makefile is the default target, which is built when no argument is specified to
the make command. By convention, there is often a target named All, which builds the system
and is also the default target. The line-

DummyTarget(All, includes Lib(gcam))

defines the target All. The function DummyTarget takes two arguments (separated by commas).
The first argument is the target to be built - All. The second argument is a space separated
list of dependencies. In this case includes and Lib(gcam). The DummyTarget function produces
a make dependency with no update rule, i.e. a dummy target. includes is just another target.
The function Lib() is used to generate an object library name3.

4.4 The includes target

Many of my dmakefiles have a target named includes, specified in a DummyTarget() macro -

DummyTarget(includes, gcam_err.h gcam_err_msgt.h vfg_err.h vfg_err_msgt.h

gcam.h vfg.h gcaminfocreate.h)

The dependencies for this target is just a list of the includes files which may have to be built
or fetched from SCCS. It will not be needed when make depend has been done, but I find it
convenient. Note that this definition should be one only one line in the actual dmakefile, since
you cannot spead function arguments over more then one line.

2Under unix, Obj(file) is converted to “file.o”, while under VMS, it is converted to “file.obj”.
3Under VMS, Lib(gcam) translates to “gcam.olb”, while under unix, it translates to “libgcam.a”.

AAO/DRAMA_MAKE_10 10

4.5 Include file generate

Under drama, some include files are generated automatically from other sources. The lines-

ErrorIncludeFiles(gcam_err)

ErrorIncludeFiles(vfg_err)

cause error message include code files to be generated. In the first case, the files “gcam_err.h”
and “gcam_err_msgt.h” are generated by running the DRAMA messgen command on “gcam_-
err.msg”.

In a similar way, the file “gcaminfocreate.h” is generated from “gcaminfo.h” using the DRAMA
sdsc command (sds compiler) with the line

SdsIncludeFile(gcaminfocreate.h, gcaminfo.h)

4.6 An Object library target

One of the major things we build are object libraries. The following line-

ObjectLibraryTarget(gcam, $(OBJECTS),)

generates the gcam object library. The actual filename for the library is based on the first
argument to the function ObjectLibraryTarget(). It is the same as would have been generated
by function Lib(). The second argument is a space separated list of object files to be placed
in the library. In this case, we use the make macro “OBJECTS”, which we defined earlier. The
third argument is a list of other dependencies for the library. Normally this is empty.

This function will create the library, load the objects into it and if necessary, run ranlib.

4.7 A DRAMA program target

The gcam system contains a simple DRAMA program, named vfg. This is built using the gcam
library, the DRAMA supplied git library and the drama libraries themselves.

The line to build this program is

DramaProgramTarget(vfg,Obj(vfgmain),Lib(gcam),LinkLib(gcam) $(GRAB_OBJS) $(LIB_GIT),)

The function DramaProgramTarget() will build a program against the DRAMA libraries. It
takes five arguments, being -

1. The target program. (no file extensions). In this case - vfg.

2. A space separated list of object files to build the program from. In this case, only vfgmain

is required.

AAO/DRAMA_MAKE_10 11

3. A space separated list of libraries on which the program is dependent. In this case, the
program is dependent on the gcam library (i.e., make ensures the gcam library is up to
date as part of building this target).

4. A space separated list of local libraries to link against and objects which are not to be
built automatically. These will normally include the libraries the target is dependent upon,
but specified with the function LinkLib() instead of Lib(). This is required as the link
specification is different from the dependency specification on some machines. In this case,
we link the library gcam and the objects specified in the make macro GARB_OBJS. We also
specify the git library using the make macro LIB_GIT, which is set up automatically.

5. The last argument is normally used to link extra system libraries, such as the maths library
under unix. In this case, we don’t need any.

It is important to understand the order in which objects and libraries are linked, as the correct
order must be used. The order is

argument2 argument4 $(DRAMA_LIBS) $(LDLIBS) argument5

Where DRAMA_LIBS and LDLIBS are macro macros defined automatically4. As a result, anything
which uses the DRAMA libraries, such as the git library, must be in argument 2 or argument4.
You should always ensure they order of libraries is such at the library containing a routine is
searched after the first routine which invokes the routine is linked in.

There also exists a function named NormalProgramTarget(), which only differs from Drama-

ProgramTarget() in that is does not link against the DRAMA libraries. Use it for simple,
non DRAMA based programs.

4.8 The Release Targets

DRAMA programs normally reside in a particular directory structure. This structure allows
the implementation of a version control system and provides a standard organisation. It is
described in [3]. Given this organisation, it proves possible to automate the release of software
into the release directories. Various functions are implemented to support this. Gcam uses the
following functions-

DramaReleaseCheck()

DramaReleaseCommon(gcam_err.h gcam_err_msgt.h gcam.h gcaminfocreate.h)

DramaReleaseCommon(vfg_err.h vfg_err_msgt.h vfg.h)

DramaReleaseTarget(vfg,Lib(gcam),,)

DramaReleaseDramaStart()

The function DramaReleaseCheck() will check to ensure you are not overwritting a previous
release. If you are, it will prompt for confirmation. For this to work, it must be the first
DramaRelease macro.

4DRAMA_LIBS links the core drama libraries. LDLIBS is defined in a complex manner but normally the resulting
definition is empty.

AAO/DRAMA_MAKE_10 12

The function DramaReleaseCommon() takes one argument which is a space separated list of files.
It generates a target named release. This is a double colon target - which means that a Makefile
can have multiple ways of updating the target. Hence we can have the multiple invocations of
DramaReleaseCommon(). On a unix machine, this particular function creates, if it does not exist,
the directory Project/local/gcam/release. Here, Project is the location of the drama project
and release is the definition of the make macro RELEASE (see configuration section above). The
files specified are then copied to the directory.

The function DramaReleaseTarget() works in a similar way. In this case, the directory is
Project/local/gcam/release/target, where target is the target type. Target types are described
in more detail later, but basically, this directory is the location for files specific to a particular
target machine, where as the common directory is common to all targets. This function takes
four arguments-

1. A space separated list of executable programs. In this case, just vfg.

2. A space separated list of object libraries. In this case, the gcam library.

3. A space separated list of executable scripts.

4. Any other files.

Any but not all of these may be null. The use of multiple arguments in this function allows, for
example, ranlib to be run on libraries after they are moved and scripts to be set executable.

The last function - DramaReleaseDramaStart() releases the files to be used by the dramastart
command. Under VMS, this is the file “GCAM_DRAMASTART.COM”. Before being released, lines
containing “RELEASE=” will be replaced by “RELEASE=release” where release is the value of
the make macro RELEASE. Under unix, a file named gcam_dramastart.rel containing the line
“RELEASE=release” will be created.

4.9 Enabling the release

The function DramaEnable() generates the target enable. It causes the file generated by the
DramaReleaseDramaStart() to be copied to Project/local/gcam. Once here, it will be picked
up by the dramastart command, making it available to users.

4.10 DramaDirs

The last function - DramaDirs() is a special target. It can be used by shell scripts which
automatically build a number of sub-systems. When doing this, it is common that some sub-
systems will be dependent on other sub-systems. You will want to do the equivalent of the
dramastart command between building each sub-system. This macro will generate a target
named dramadirs. If your unix build script does-

eval ‘make dramadirs‘

AAO/DRAMA_MAKE_10 13

after making a release of gcam, then the same effect will occur as if you had executed dramastart
after having enabled gcam. Why not just execute dramastart? Because it will not return to
your script.

Under VMS, you will need a command procedure which does something like this-

$mms dramadirs

$@gcam_dir:gcam_dramastart

to get the same effect.

For example, the gcam system is dependent on the git system. If you want to build git and
gcam automatically, you need to enable git before building gcam.

4.11 Using it

Now that we have a dmakefile, we need to generate the appropriate makefile. Currently there
are three possible targets (VAX/VMS, Sun/Sparc and VxWorks 680x0) and two host machines
(VAX/VMS and Sun/Sparc). We will examine how to build systems on a Sun/Sparc for either
the Sun itself or for a VxWorks target. We will also look a targeting VAX/VMS.

4.11.1 Targeting a Sun/Sparc

Assuming you are in the directory containing the system you which to build (say gcam), you
must first enable drama with the dramastart command (normally ~drama/dramastart

You must then enable the various drama commands by sourcing a file. If you are running a sh
compatible shell, do

. $DRAMA/drama.sh

If you are running a csh compatible shell, do

source $DRAMA/drama.csh

You now execute the command

dmkmf

This is a script which will run the imake program. You must always invoke imake via this script,
never directly.

You now have your Makefile. Type make to build the All target. Type make release to release
the system. Type make enable to enable the release. Type make clean to tidy up.

It is not normally neccessary or desirable for you to be concerned with what is actually put in
the Makefile. They are somewhat more complex then the standard hand-generated Makefile.

AAO/DRAMA_MAKE_10 14

4.11.2 Targeting a VxWorks 68020

Assuming a sun host, the procedure is the same as above, except that you must specify the
argument vw68k to the dramastart command.

4.11.3 Targeting VAX/VMS

VMS is a bit more complex. Currently, the imake program does not exist under VMS. As a
result, you must take your dmakefile to a unix machine to create a descrip.mms file. You can
then take the descrip.mms file back to the VMS machine and run MMS.

The procedure to create the descrip.mms file is similar to that above for a sun host. The
difference is the specification of the dmkmf command. Use-

dmkmf -f -t vaxvms

This will generate your descrip.mms file. The -f flag is optional but is recommended. It causes
the file to be generated using rules which result in a much faster build.

Once you have your descrip.mms back on the vax, go to the directory and type DRAMASTART
followed by MMS to build the target All. Type MMS RELEASE to release the system. Type
MMS ENABLE to enable the release. Type MMS CLEAN to tidy up.

It is hoped that a VMS version of imake can be generated in the future. In the meantime, it
is suggested that having your VMS discs NFS mounted on a unix machine reduces the work
involved here.

5 How it works

Although imake is a fairly powerful took, it is a very simple program. All of the real work is
preformed by the template and configuration files. It is here that there is a major difference
between the DRAMA use of imake and the X11 use of imake

The imake driver program - dmkmf first converts its own arguments into a set of C preprocessor
macro definitions. It then runs the imake program specifying the template file imake.tmpl (in
the DRAMA config directory) as the input file, the macro definitions it has worked out and the
DRAMA config directory as the default source for C preprocessor include files. Imake does a
bit of processing on the user’s dmakefile and then passes imake.tmpl to the C preprocessor, along
with the macro definitions generated by dmkmf and one defining the location of the processed
version of the user’s dmakefile

So in effect, imake.tmpl is the driver file for the C preprocessor. This template does the following
to create a Makefile

1. Includes the file Target.sel. Normally, imake.tmpl makes use of predefined C preprocessor
macros for each architecture to work out which machine it is running on. The Target.sel
file first undefines all such macros and then uses a macro set by dmkmf to define macros
for an architecture other then the machine it is running on - i.e. the target architecture.
If no target architecture was defined, then the host machine is used.

AAO/DRAMA_MAKE_10 15

2. Includes the file Platform.sel. This file determines the name of the configuration file for
the target architecture.

3. Includes the target architecture specific configuration file. This program includes defines
C preprocessor macros which are dependent on the target machine and host operating
system. It is normally named machine.cf, where machine is something like sun, vaxvms
etc.

4. Includes the file site.def. This file specified site specific information such as the location
of the drama project. Note that some site specific information is also set in the target
specific configuration file, since some such information may be machine specific.

5. Includes the file Project.defs. This sets C macros which defines the various functions
provided by the configuration utility and also macros which define the location and names
of various commands. These definitions are often overriden by defining them in the machine
specific configuration file. For example, on VMS, many of the rules defined in Project.defs
must be overridden.

6. Includes the file Imake.defs. This file ensures things required by imake are defined to
default values, if not already defined in the previous files.

7. Includes the file ImakeBasicS1.tmpl, which defines the first part of the actual makefile,
using previously defined C macros. It is this file which defines the make macros in the first
part of the file.

8. Includes the modified version of the user’s dmakefile.

9. Includes the file ImakeBasicS2.tmpl, which defines the bottom part of the actual makefile.
Here are defined the make rules for running the targets clean and depend.

Which the exception of the user’s dmakefile, standard C preprocessor constructs are used
throughout these files.

After running imake, the dmkmf script will move the configuration section to the beginning of
the make file using a awk script and run sed to remove the sequence by “%%\”, which is used to
escape quote and double quote characters.

By isolating the machine and site specifics from the programer, this tool allows properly config-
ured Makefiles to be regenerated quickly and correctly.

5.1 VMS Tricks

VMS is a bit harder to handle then unix. There are three major problems

1. Most of the VMS command we use take there arguments are a comma separated list,
whereas in unix, the arguments are normally a space separated list. This makes it hard to
translate a unix macro definition into something which can be run on a VMS machine.

2. Unix compilers use -I and -D to specify include directories and C Pre-Processor defines
respectively. VMS uses /INCLUDE= and /DEFINE=.

AAO/DRAMA_MAKE_10 16

3. VMS tends to be a slower at running MMS, then unix is at running Make. The major
reason is the longer image startup time on VMS.

Problem 1 has be avoided by running the complers and linker via an intermediate program
- RUNEM. This program resides DRAMAUTIL_DIR: and is responsible for converting unix style
argument lists into VMSstyle lists. In addition, it also handles problem 2 by converting unix
style include directory and macro definitions into the VMS style.

Problme 3 is optionally handled when the -f flag is specified to dmkmf. This causes the com-
pilation of C programs to be delayed so that one run of the compler can process several source
files. This is handled by a pair of command scripts in DRAMAUTIL_DIR.

6 Writing dmakefiles

Having read section 4, you will have a good idea of what it will look like. Appendix B details
the imake functions and make macros which you are likely to need. Since most dmakefiles look
similar to the one in appendix D, you should grab a copy of it5 and modify it as you require.

7 Local configuration

It is often nessary to locate files local to a configuration or to alter command options for a
particular machine.

Consider an example from the AAO Two degree field project. At one time the system level
software was located in ”/instsoft/2dF” at Epping an in ”/home/aatssb/2dF” at the telescope.
It would be nice to be able to move dmakefile’s between Epping and the telescope without having
to edit them, but this difference in location made edits necessary. The DRAMA configuration
system can assist.

If a the file “$DRAMA_LOCAL/drama_local.cf” exists, then it is included when Imake runs cpp,
after the target has been determined and project specific configuration read. It can be used
define local macros. In the above example, it can be used to define a macro which locates the
AAO 2dF system software.

In addition, you may wish to change the configuration based on the node you are running on.
In the above example, we could actually use the one copy of “$DRAMA_LOCAL/drama_local.cf”
at both sites if a macro can be defined to indicate which site we are running at. This can be
handled by creating an executable program named “$DRAMA_LOCAL/drama_local.opts”. This
is normally a script (note that you must set the protection such that the user can execute it).
The output from this program should be a sequence of options to be passed to imake. These
are normally macro definitions.

The AAO copy of “$DRAMA_LOCAL/drama_local.opts” contains

5Available as part of the demos which come with drama.

AAO/DRAMA_MAKE_10 17

NODE=‘uname -n‘

case "$NODE" in

aao*)

echo -DAAO_EPPING

;;

aat*)

echo -DAAO_COONA

;;

*)

;;

esac

This results in imake being passed “-DAAO_EPPING if we are running at AAO Epping (where all
node names start with aao) and “-DAAO_COONA if we are running at the telescope (where all node
names start with aat). This leads to the following implementation of “$DRAMA_LOCAL/drama_local.cf”

#ifdef AAO_EPPING

#define AAO2dFDir /instsoft/2dF

#elif defined(AAO_COONA)

#define AAO2dFDir /home/aatssb/2dF

#endif

It is also possible to modify compiler options etc. if required.

AAO/DRAMA_MAKE_10 18

A Programs

This appendix documents programs mentioned in this document.

AAO/DRAMA_MAKE_10 19

A.1 dmkmf — Generate a Makefile from a dmakefile.

Function: Generate a Makefile from a dmakefile.

Synopsis: dmkmf [options]

Description: Run imake on the the file dmakefile in the current directory to generate a Makefile
(except for vms targets when a descrip.mms file is generated)

Options:

-t target Sets the target. It defaults to the current value of DRAMA_TARGET. If this is not
defined it defaults to the current host. Possible values are

sun4 A sun sparcstation sun4_solaris
decstation A decstation running ultrix
vw68k A 680x0 running VxWorks
vwppc A PowerPC running VxWorks
mv167 A 680x0 running VxWorks
mv2700 A PowerPC running VxWorks
vaxvms A vax running vms
alphavms A alpha running vms

-l Set verbose mode in Makefile. Lots of comments in the resulting Makefile.

-n Make dmkmf reverts to it old noisy way of working - verbose details spilled to stdout.

-f Only effective with VMS targets. Causes rules to build VMS systems quickly to be defined,
but the order of the build will change.

-g Enable debugging flags

-O Enable Optimization flags

-v version Define the macro Version_version, where version is normally something like
5_0 This enables selection of different target versions. It must be supported by the
target cofiguration file. If not defined, use value of DRAMA_VERSION if this is not
defined, defaults to a site specific default. Multiple specifications allowed and can
also be used to pass flags to the dmakefile.

-nodepend Don’t generate the include file dependency check code.

-noautotest Don’t automatically test as part of build.

Author: Tony Farrell, AAO

AAO/DRAMA_MAKE_10 20

B Imake Functions

This section describes the various Imake functions which you may using in your dmakefile and
the Make macros defined and used by the resulting makefile. There are three types of items
described here

Functions translated by the imake into appropriated lines in the Makefile.

Macros to set. These aremakemacros which can be or should be set by the user to appropriate
values.

Macros to invoke. These are em make macros setup automatically which can be invoked by
the user.

B.1 File specification

This Functions allow you to specify various files, such as executables and objects, in such a way
as to be operating independent.

B.1.1 Exe

Type: Function

Description: Specifies that its argument is an executable file.

Call:
Exe(file)

Arguments:

file The name of the executable.

B.1.2 Obj

Type: Function

Description: Specifies that its argument is an object file.

Call:
Obj(file)

Arguments:

file The name of the object.

AAO/DRAMA_MAKE_10 21

B.1.3 Lib

Type: Function

Description: Specifies that its argument is an object library file.

Call:
Lib(file)

Arguments:

file The name of the library.

B.2 System Configuration

This section specifies functions which are replaced by their arguments only under certain con-
ditions. Otherwise, the will be replaced by a blank line.

B.2.1 VmsOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine running VMS.

Call:
VmsOnly(rule)

B.2.2 NotVms

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is NOT a machine running VMS.

Call:
NotVms(rule)

AAO/DRAMA_MAKE_10 22

B.2.3 UnixOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine running unix.

Call:
UnixOnly(rule)

B.2.4 NotUnix

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is NOT a machine running unix.

Call:
NotUnix(rule)

B.2.5 EmbeddedOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is an embedded system (such as VxWorks)

Call:
EmbeddedOnly(rule)

B.2.6 NoEmbedded

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is NOT an embedded system (such as Vx-
Works).

Call:
NoEmbedded(rule)

AAO/DRAMA_MAKE_10 23

B.2.7 StarlinkOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine that has the starlink software
environment installed. (assuming DRAMA is configured correctly - see the [4])

Call:
StarlinkOnly(rule)

B.2.8 NoStarlink

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target machine does NOT have starlink software
environment installed. (assuming DRAMA is configured correctly - see the [4])

Call:
NotStarlink(rule)

B.2.9 MotifOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine that has the Motif X11 window
environment installed. (assuming DRAMA is configured correctly - see the [4])

Call:
MotifOnly(rule)

B.2.10 NoMotif

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target machine does NOT have the Motif X11 window
environment installed. (assuming DRAMA is configured correctly - see the [4])

AAO/DRAMA_MAKE_10 24

Call:
NoMotif(rule)

B.2.11 TclOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine that has the Tcl X11 system
installed. (assuming DRAMA is configured correctly - see the [4])

Call:
TclOnly(rule)

B.2.12 NoTcl

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target machine does NOT have the Tcl installed.
(assuming DRAMA is configured correctly - see the [4])

Call:
NoTcl(rule)

B.2.13 TkOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine that has the Tk X11 window
environment installed. (assuming DRAMA is configured correctly - see the [4])

Call:
TkOnly(rule)

AAO/DRAMA_MAKE_10 25

B.2.14 NoTk

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target machine does NOT have the Tk X11 window
environment installed. (assuming DRAMA is configured correctly - see the [4])

Call:
NoTk(rule)

B.2.15 CPlusPlusOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target is a machine that has a C++ compiler installed.
(assuming DRAMA is configured correctly - see the [4])

Call:
CPlusPlusOnly(rule)

B.2.16 NoCPlusPlus

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target machine does NOT have a C++ complier
installed. (assuming DRAMA is configured correctly - see the [4])

Call:
NoCplusPlus(rule)

B.2.17 FortranOnly

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied toMakefile only if the target is a machine that has a fortran compiler installed.
(assuming DRAMA is configured correctly - see the [4])

AAO/DRAMA_MAKE_10 26

Call:
FortranOnly(rule)

B.2.18 NoFortran

Type: Function

Description: The argument to this function will be examined for further functions and the
result copied to Makefile only if the target machine does NOT have a fortran complier
installed. (assuming DRAMA is configured correctly - see the [4])

Call:
NoFortran(rule)

B.3 Drama Libraries Macros

B.3.1 NormalCRules

Type: Function

Description: Include the rules necessary for building objects from C language source files.
This macro should be before the first target.

Obsolete. Please replace this by NormalRules().

Call:
NormalCRules()

B.3.2 NormalRules

Type: Function

Description: Include the rules necessary for building objects from C and Fortran language
source files. This macro should be before the first target and replaced NormalCRules()

Call:
NormalRules()

AAO/DRAMA_MAKE_10 27

B.3.3 JavaRules

Type: Function

Description: Include the rules necessary for building Java program. This macro should be
before the first target.

Call:
JavaRules()

B.3.4 AnsiC

Type: Function

Description: This function expands to C compiler options which enable acceptance of Ansi-C
code. This will only work if the compiler supports it.

Call:
AnsiC()

B.3.5 AnsiCFull

Type: Function

Description: This function expands to C compiler options which enable acceptance of Ansi-C
code and also enables options to cause warning to be output when potential non-portable
code is used. This will only work if the compiler supports it.

Call:
AnsiCFull()

B.3.6 TraditionalC

Type: Function

Description: This function expands to C compiler options which enable acceptance of Traditional-
C and also enables options to cause warning to be output when potential non-portable
code is used. This will only work if the compiler supports it.

Call:
TraditionalC()

AAO/DRAMA_MAKE_10 28

B.3.7 ExtraCWarnings

Type: Function

Description: This function expands to C compiler options which enable acceptance of Tra-
ditional C code and also enables options to cause warnings to be output when potential
non-portable code is used. This will only work if the compiler supports it.

Call:
ExtraCWarnings()

B.3.8 USERCCOPTIONS

Type: Make Macro to be set.

Description: This macro is used by the rule which updates an object file from a C source file.
It should be used to indicate the any required options to the C compiler. It is normal set
to one of AnsiC(), AnsiCFull() or TraditionalC().

Call:
USERCCOPTIONS=

B.3.9 AnsiCC

Type: Function

Description: This function expands to C++ compiler options which enable acceptance of
Ansi-C++ code. This will only work if the compiler supports it.

Call:
AnsiCC()

B.3.10 AnsiCCFull

Type: Function

Description: This function expands to C++ compiler options which enable acceptance of
Ansi-C++ code and also enables options to cause warning to be output when potential
non-portable code is used. This will only work if the compiler supports it.

Call:
AnsiCCFull()

AAO/DRAMA_MAKE_10 29

B.3.11 USERCCCOPTIONS

Type: Make Macro to be set.

Description: This macro is used by the rule which updates an object file from a C++ source
file. It should be used to indicate the any required options to the C++ compiler.

(Note the extra C over USERCCOPTIONS above).

Call:
USERCCCOPTIONS=

B.3.12 IDir

Type: Function

Description: Generate an include directory specification for a directory which is known by a
logical name on VMS machines or an environment variable on unix machines.

Call:
IDir(directory)

B.3.13 LinkLibDir

Type: Function

Description: Generate an library specification for a library in a directory which is known by
a logical name on VMS machines or an environment variable on unix machines.

Call:
LinkLibDir(directory,library)

Arguments:

directroy The logical name/environement variable name.
library The library name, as would be supplied to Lib().

AAO/DRAMA_MAKE_10 30

B.3.14 DRAMA_INCL

Type: Make macro to be invoked.

Description: This macro is defined automatically to a C compiler option which will specifies
the include directories for all the core drama libraries.

Call:
$(DRAMA_INCL)

B.3.15 TCLTK_INCL

Type: Make macro to be invoked.

Description: This macro is defined automatically to a C compiler option which will specifies
the include directories for the Tcl and Tk libraries.

Call:
$(TCLTK_INCL)

B.3.16 INCLUDES

Type: Make Macro to be set.

Description: This macro is used by the rule which updates an object file from a C source file.
It should be used to indicate the directories which should be searched for include files.
Note the the format -Idirectory will work in all cases. (even on VMS).

Call:
INCLUDES=

B.3.17 Define

Type: Function

Description: Generate code designed for defining C preprocessor macros ensuring case is
maintained. The definition is specified in the form macro=definition or just macro to
define a macro to 1.

Call:
Define(macrodef)

AAO/DRAMA_MAKE_10 31

B.3.18 StringDefine

Type: Function

Description: Generate code designed for defining C preprocessor macros to string values in
the command line to the C compiler.

Call:
StringDefine(macro,string)

Arguments:

macro The name of the macro to define. Case will be maintained.
string The string to define the macro to.

B.3.19 DEFINES

Type: Make Macro to be set.

Description: This macro is used by the rule which updates an object file from a C source file.
It should be used to indicate the C preprocess macros to be defined. Note the the format
-Dname=definition will work in all cases. (even on VMS), but case and strings can be a
problem. Under VMS, the macro name will be converted to lower case, unless wrapped in
one of the special functions above. Likewise, you should use the StringDefine() function
above to define string macros.

Call:
DEFINES=

B.3.20 JUSEROPTIONS

Type: Make Macro to be set.

Description: This macro is used by the rule which updates a JAVA class file from a Java
source file. It should be used to indicate any extra options to the ”javac” command.

Call:
JUSEROPTIONS=

AAO/DRAMA_MAKE_10 32

B.3.21 JCLASSPATH

Type: Make Macro to be set.

Description: This macro is used by the rule which updates a java class file from a Java source
file. It should be used to override the classpath if required.

Note,you must include the -classpath option. E.g.

JCLASSPATH=-classpath dir1:dir2

Call:
JCLASSPATH=

B.3.22 JDIRFLAG

Type: Make Macro to be set.

Description: This macro is used by the rules which updates a java class file from a Java source
file. It should be used to override the “-d” specification if required.

By default, the value of this is “-d .”. This indicates that class files for any package are
created in a sub-directory of the current directory, and the sources are found in the current
directory. See the javac command documentation for other possiblities.

Set this value before you invoke JavaRules().

Call:
JDIRFLAG=

B.3.23 JavaPackageClassesMacro

Type: Function

Description: Used to create a make macro the value of which a list of fully specified Java
package class members, suitable for use with the JavaPackageTarget() macro.

Call:
JavaPackageClassesMacro(macro, package, contents)

Arguments:

macro The name of the make Macro to be set.
package The name of the Java package
contents The classes which make up the Java package.

AAO/DRAMA_MAKE_10 33

B.4 Objects, Libraries and Executables

B.4.1 CObject

Type: Function

Description: Expands to a make rule which build an object from a C language source file.
This function is normally not necessary as internal make rules will do this automatically.
This function should be used when the Object is dependent on other files as well as the C
language source.

Call:
CObject(object,depends)

Arguments:

object The name of the object file to create. object.c is used as the
C language source file.

depends Additional dependencies (such as include files).

B.4.2 FortranObject

Type: Function

Description: Expands to a make rule which build an object from a Fortran language source
file.

Call:
FortranObject(object,depends)

Arguments:

object The name of the object file to create. object.f is used as
the Fortran language source file on unix machines and ob-
ject.FOR on VMS machines.

depends Additional dependencies (such as include files).

B.4.3 ObjectLibrary

Type: Function

Description: Generates an object library from a list of objects. Note that there are multiple
versions of this call, which only differ in that in all but the basic call, there are multiple
lists of objects on which the library is dependent. This is required as a single object list
should not exceed about 200 characters.

AAO/DRAMA_MAKE_10 34

Call:
ObjectLibrary(libname, objlist, depend)
ObjectLibrary2(libname, objlist, objlist, depend)
ObjectLibrary3(libname, objlist, objlist, objlist, depend)
ObjectLibrary4(libname, objlist, objlist, objlist, objlist depend)

Arguments:

libname The name of the library to create. It is automatically
wrapped in the Lib() function, so you should not do this
yourself.

objlist A space separated list of object files on which the library is
dependent. Each object should be wrapped in the Obj()
function. An object list should not exceed about 200
characters.

B.4.4 NormalProgramTarget

Type: Function

Description: This function will build the specified program.

Call:
NormalProgramTarget(program,objects,deplibs, localibs, syslibs)

Arguments:

program The program to build
objects A list of objects program is dependent on. These objects

will be linked into the program.
deplibs A list of libraries program is dependent on. These libraries

will NOT be link to the program, you must use locallibs to
specify which libraries are to be linked.

locallibs A list of libraries and objects to link against.
syslibs A List of system libraries to link against.

B.4.5 DramaProgramTarget

Type: Function

Description: This function will build the specified program and links it against the DRAMA
libraries.

Call:
DramaProgramTarget(program,objects,deplibs, localibs, syslibs)

AAO/DRAMA_MAKE_10 35

Arguments:

program The program to build
objects A list of objects program is dependent on. These objects

will be linked into the program.
deplibs A list of libraries program is dependent on. These libraries

will NOT be link to the program, you must use locallibs to
specify which libraries are to be linked.

locallibs A list of libraries and objects to link against.
syslibs A List of system libraries to link against.

B.4.6 CPPProgramTarget

Type: Function

Description: This function will build the specified program, assuming a C++ main routine.

Call:
CPPProgramTarget(program,objects,deplibs, localibs, syslibs)

Arguments:

program The program to build
objects A list of objects program is dependent on. These objects

will be linked into the program.
deplibs A list of libraries program is dependent on. These libraries

will NOT be link to the program, you must use locallibs to
specify which libraries are to be linked.

locallibs A list of libraries and objects to link against.
syslibs A List of system libraries to link against.

B.4.7 DramaCPPProgramTarget

Type: Function

Description: This function will build the specified program and links it against the DRAMA
libraries, assuming a C++ main routine.

Call:
DramaCPPProgramTarget(program,objects,deplibs, localibs, syslibs)

Arguments:

AAO/DRAMA_MAKE_10 36

program The program to build
objects A list of objects program is dependent on. These objects

will be linked into the program.
deplibs A list of libraries program is dependent on. These libraries

will NOT be link to the program, you must use locallibs to
specify which libraries are to be linked.

locallibs A list of libraries and objects to link against.
syslibs A List of system libraries to link against.

B.4.8 JavaProgramTarget

Type: Function

Description: This function will build the specified Java program.

Call:
JavaProgramTarget(program,depends)

Arguments:

program The program to build
depends A list of targets the program is dependent on.

B.4.9 JavaPackageTarget

Type: Function

Description: This function will build the specified Java package

Call:
JavaPackageTarget(package,depends)

Arguments:

program The program to build
depends A list of targets the program is dependent on. This should

be a space separated list of the class files the package is
dependent on. It should have the following format

package/classname1.class package/classname2.class

You can create a make Macro with this format using the
JavaPackageClassesMacro().

AAO/DRAMA_MAKE_10 37

B.5 Lex and Yacc

B.5.1 YaccObject

Type: Function

Description: Creates a series of rules where an object file is dependent on a C source file and
include file which were generated by the yacc utility. In a unix development environment,
rules to generate the C code from the yacc source are output, as well as rules to generate
the the object from the C code. On a VMS host, it is assumed the C code already exists
(since VMS does not have yacc).

Call:
YaccObject(parser,depends)

Arguments:

parser The name of the parser file from which the C source and
object are created. The actual file must have a file type of
.y, which should not be included in this call.

depends Additional files the lexer object is dependend on, such as
include files.

B.5.2 LexObject

Type: Function

Description: Creates a series of rules where an object file is dependent on a C source file which
was generated by the lex utility. In a unix development environment, rules to generate
the C code from the lexer source are output, as well as rules to generate the the object
from the C code. On a VMS host, it is assumed the C code already exists (since VMS
does not have lex).

Call:
LexObject(lexer,depends)

Arguments:

lexer The name of the lexer file from which the C source and
object are created. The actual file must have a file type of
.l, which should not be included in this call.

depends Additional files the lexer object is dependend on, such as
include files.

AAO/DRAMA_MAKE_10 38

B.5.3 YaccObjectFixed

Type: Function

Description: Creates a series of rules where an object file is dependent on a C source file and
include file which were generated by the yacc utility. In a unix development environment,
rules to generate the C code from the yacc source are output, as well as rules to generate
the the object from the C code. On a VMS host, it is assumed the C code already exists
(since VMS does not have yacc).

Unlike the plain YaccObject macro, This macro allows you to specify a prefix to the Yacc
and Lex global function and variable names. This prefixed is applied using a sed script to
edit C code which results from running Yacc. This technique allows you to link several
Yacc/Lex based modules into one program. Yacc and Lex identifiers are normally named
begining with yy, e.g. yyparse(). The fixed name will be prefix-Yyparse(). You should
choose your prefix such that this is a valid C identifier.

Call:
YaccObjectFixed(parser,depends,prefix)

Arguments:

parser The name of the parser file from which the C source and
object are created. The actual file must have a file type of
.y, which should not be included in this call.

depends Additional files the lexer object is dependend on, such as
include files.

prefix The user selected prefixed to be applied to global Yacc and
Lex identifiers.

B.5.4 LexObjectFixed

Type: Function

Description: Creates a series of rules where an object file is dependent on a C source file which
was generated by the lex utility. In a unix development environment, rules to generate
the C code from the lexer source are output, as well as rules to generate the the object
from the C code. On a VMS host, it is assumed the C code already exists (since VMS
does not have lex).

Unlike the plain Lexbject macro, This macro allows you to specify a prefix to the Yacc
and Lex global function and variable names. This prefixed is applied using a sed script
to edit C code which results from running Lex. This technique allows you to link several
Yacc/Lex based modules into one program. Yacc and Lex identifiers are normally named
begining with yy, e.g. yyparse(). The fixed name will be prefix-Yyparse(). You should
choose your prefix such that this is a valid C identifier.

AAO/DRAMA_MAKE_10 39

Call:
LexObjectFixed(lexer,depends,prefix)

Arguments:

lexer The name of the lexer file from which the C source and
object are created. The actual file must have a file type of
.l, which should not be included in this call.

depends Additional files the lexer object is dependend on, such as
include files.

prefix The user selected prefixed to be applied to global Yacc and
Lex identifiers.

B.5.5 YACC_LIB

Type: Make Macro to be invoked.

Description: This macro is defined automatically to point to the libraries which must be
included in a program which uses objects generated from yacc sources. Normally, this
macro as a system library when building such programs.

Call:
$(YACC_LIB)

B.5.6 LEX_LIB

Type: Make Macro to be invoked.

Description: This macro is defined automatically to point to the libraries which must be
included in a program which uses objects generated from lex sources. Normally, this
macro as a system library when building such programs.

Call:
$(LEX_LIB)

B.6 Release and enabling targets

In all the following targets, files are release to the directory structure in either-

� DramaProject/local/subsys/release_num

AAO/DRAMA_MAKE_10 40

� DramaProject/release/subsys/release_num

depending on the use of the -s flag to dmkmf. subsys can be set with the make macro SYSTEM,
while release_num can be set with the make macro RELEASE. Note that in both cases, these must
be in lower case and should be valid file names on all architectures on which the program may
be run. In the reset of the this section, this directory is referred to as ReleaseDirectory.

B.6.1 DramaReleaseCheck

Type: Function

Description: Check for overwriting of an existing release. This function will check if the
target directory (architecture specific) exists and will prompt the user for confirmation to
continue if it does.

This should be the first of the release targets in a file, excpet for ones with no libraries or
exectuables to release.

Call:
DramaReleaseCheck()

B.6.2 DramaReleaseJavaCheck

Type: Function

Description: Check for overwriting of an existing release (Java files case). This function
will check if the Java target directory exists and will prompt the user for confirmation to
continue if it does.

This function replaces for supplments DramaReleaseCheck() for systems which release
Java files.

Call:
DramaReleaseJavaCheck()

B.6.3 DramaReleaseCommon

Type: Function

Description: Copy a list of files to ReleaseDirectory

Call:
DramaReleaseCommon(stuff)

AAO/DRAMA_MAKE_10 41

B.6.4 DramaReleaseScriptTo

Type: Function

Description: Copy a command script file to ReleaseDirectory/target, where target is the target
name. The output file may be a different name to the input file. The output file is set
executable.

Call:
DramaReleaseScriptTo(source,target)

Arguments:

source Source file.
target Name it is to be copied to.

B.6.5 DramaReleaseTargetTo

Type: Function

Description: Copy a file to ReleaseDirectory/target, where target is the target name. The
output file may be a different name to the input file.

Call:
DramaReleaseTargetTo(source,target)

Arguments:

source Source file.
target Name it is to be copied to.

B.6.6 DramaReleaseLibTo

Type: Function

Description: Copy an object library file to ReleaseDirectory/target, where target is the target
name. The output file may be a different name to the input file. Ranlib will be run on the
output file if necessary.

Call:
DramaReleaseLibTo(source,target)

Arguments:

source Source file.
target Name it is to be copied to.

AAO/DRAMA_MAKE_10 42

B.6.7 DramaReleaseCommonTo

Type: Function

Description: Copy a file to ReleaseDirectory. The output file may be a different name to the
input file.

Call:
DramaReleaseCommonTo(source,target)

Arguments:

source Source file.
target Name it is to be copied to.

B.6.8 DramaReleaseTarget

Type: Function

Description: Copy particular file types to ReleaseDirectory/target where target is the target
architecture.

Call:
DramaReleaseTarget(Execs, Libs, ExeScripts , Other)

Arguments:

Execs A list of executable images.
Libs A list of object libraries. If necessary, ranlib will be run after

they are copied.
ExeScripts A list of executable scripts to be copied. If necessary, they

will be set executable after being copied.
Other Any other files which may need to be copied.

B.6.9 DramaReleaseJava

Type: Function

Description: Copy all Java class files from the current directory to the Java release directory.

Call:
DramaReleaseJava(depends)

Arguments:

depends Make file dependencies for this target. Can be empty.

AAO/DRAMA_MAKE_10 43

B.6.10 DramaReleaseJavaTo

Type: Function

Description: Copy all Java class files from the current directory to the specified sub-directory
of the Java release directory.

Call:
DramaReleaseJavaTo(depends,directory)

Arguments:

depends Make file dependencies for this target. Can be empty.
directory The sub-directory of the Java release directory to copy the

files to.

B.6.11 DramaReleaseJavaPackage

Type: Function

Description: Copy the Java package from the current directory to the Java release directory.

Call:
DramaReleaseJava(package)

Arguments:

package The Java package to release.

B.6.12 DramaReleaseDramaStart

Type: Function

Description: Create/Modify a dramastart file. In the case of unix target, a file named
subys_dramastart.rel is created in the release directory. It will contain the line RE-

LEASE=release_num. In the case of a VMS target, a file named subsys_dramasstart.com
is copied to the release directory and any line starting with $RELEASE= is replace by
$RELEASE=“release_num”. The file is created in ReleaseDirectory.

Call:
DramaReleaseDramaStart(stuff)

AAO/DRAMA_MAKE_10 44

B.6.13 DramaEnable

Type: Function

Description: Enable the current release of the subsystem being built. The file subsys_dramastart.rel
(unix) or subsys_dramastart.com (VMS) is copied to DramaProject/local/subsys or
DramaProject/release/subsys depending on the use of the -s flag to dmkmf. This has
the effect of enabling the release when the dramastart command is next executed.

Call:
DramaEnable()

B.7 Include file generation

Functions are provided to allow include files to be generated using various utilities.

B.7.1 ErrorIncludeFiles

Type: Function

Description: Generate error message code include files to be generated using the messgen
utility. The files file.h and file_msg.h are generated from file.msg

Call:
ErrorIncludeFiles(file)

B.7.2 FortranErrorIncludeFile

Type: Function

Description: Generate fortran error message code include files to be generated using the
messgen utility. Under unix, the file file is generated from file.msg, while under VMS,
the file file.for is generated.

Call:
FortranErrorIncludeFile(file)

AAO/DRAMA_MAKE_10 45

B.7.3 SdsIncludeFile

Type: Function

Description: Run the sdsc utility on the specified input file to generate the specified output
file.

Call:
SdsIncludeFile(target,source)

Arguments:

target The name input which the result is put
source The source file.

B.8 General Functions and Macros

B.8.1 DramaCheckTarget

Type: Function

Description: Generates a simple dependency named checktarget which checks the current
system DRAMA Target against the target for which the Makefile was built. You can then
execute the command make checktarget to check the environment and makefile agree.

It is generally worthwhile to include the target checktarget as a dependencies of the All
target.

Call:
DramaCheckTarget()

B.8.2 SimpleDependency

Type: Function

Description: Generates a simple dependency with a rule to update the target. This func-
tion is normally used to wrap a non-standard dependency in something like VmsOnly(),
StarlinkOnly() etc..

Call:
SimpleDependency(target,depends,command)

Arguments:

target The target file
depends A list of dependency files
command The command to update the target from the list of

dependencies.

AAO/DRAMA_MAKE_10 46

B.8.3 DummyTarget

Type: Function

Description: Produces a rule with no update command. This is necessary because not all
make utilities accept and on some machines it must be fudged.

Call:
DummyTarget(target,depends)

Arguments:

target The target.
depends A list of things the target depends on.

B.8.4 RunCurrentDir

Type: Function

Description: Generates code which will run a program known to be located in the current
directory. This is normally used to run programs which have been generated as part of
the build.

Call:
RunCurrentDir(program)

B.8.5 STARLINK_DIR

Type: Make macro to be invoked.

Description: This macro is setup automatically when running under unix to point to the
Starlink directory structure (normally, /star).

Call:
$(STARLINK_DIR)

B.8.6 TARGET

Type: Make macro to be invoked.

Description: This macro is setup automatically to the target machine type.

Call:
$(TARGET)

AAO/DRAMA_MAKE_10 47

B.8.7 HOST

Type: Make macro to be invoked.

Description: This macro is setup automatically to the host machine type.

Call:
$(HOST)

B.8.8 DramaDirs

Type: Function

Description: Generate a target which when invoked will output commands to set environment
variables to locate the release directories.

Under unix, the environment variables subsys_DIR subsys_LIB and subsys_DEV are set to
appropriate values. The user should do something like eval ’make dramadirs’ to get
the required effect.

Under VMS, the logical name subsys_DIR is set to the appropriate value. The user should
do something like mms dramadirs to get the required effect.

After making the target resulting from this target, it should be possible to use link against
objects in subsys. As a result, this target is used by scripts which automatically build a
number of sub-systems.

Call:
DramaDirs()

B.9 Library Macros

B.9.1 LIB_MOTIF

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the Motif X-Windows Libraries.

Call:
$(LIB_MOTIF)

AAO/DRAMA_MAKE_10 48

B.9.2 LIB_NET

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the networking libraries.

Call:
$(LIB_NET)

B.9.3 FCLIBS

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the libraries required when
linking objects built from fortran source.

Call:
$(FCLIBS)

B.9.4 LIB_TCL

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to Tcl Libraries.

Call:
$(LIB_TCL)

B.9.5 LIB_TK

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the Tk X-11 Libraries. Note,
Tcl is included with Tk.

Call:
$(LIB_TK)

AAO/DRAMA_MAKE_10 49

B.10 Drama Library Macros

B.10.1 DRAMA_LIBS

Type: Make macro to be invoked.

Description: This macro is defined automatically to a C compiler option which will link all
the core drama libraries. Is is not required for targets built using DramaProgramTarget.

Call:
$(DRAMA_LIBS)

B.10.2 LIB_DITS

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Dits library. Is
is not required for targets built using DramaProgramTarget.

Call:
$(LIB_DITS)

B.10.3 LIB_DRAMAUTIL

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMAutilities library.
Is is not required for targets built using DramaProgramTarget.

Call:
$(LIB_DRAMAUTIL)

B.10.4 LIB_GIT

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Git library.

Call:
$(LIB_GIT)

AAO/DRAMA_MAKE_10 50

B.10.5 LIB_DTCL

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Dtcl library.

Call:
$(LIB_DTCL)

B.10.6 LIB_ERS

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Ers library. Is is
not required for targets built using DramaProgramTarget.

Call:
$(LIB_ERS)

B.10.7 LIB_IMP

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Imp library. Is
is not required for targets built using DramaProgramTarget.

Call:
$(LIB_IMP)

B.10.8 LIB_MESSGEN

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Messgen library.
Is is not required for targets built using DramaProgramTarget.

Call:
$(LIB_MESSGEN)

AAO/DRAMA_MAKE_10 51

B.10.9 LIB_SDS

Type: Make macro to be invoked.

Description: This macro is defined automatically to point to the DRAMA Sds library. Is is
not required for targets built using DramaProgramTarget.

Call:
$(LIB_SDS)

C C compiler pre-processor Macros

When a makefile generated by dmkmf is executed and compiles a C source into an object, certain
preprocessor macros will be defined to assist in writing portable code.

C.1 Sun target

When the target is a sun, the macros sun and unix are defined to 1. When the target is a sun
running solaris 2.0 or greater, the macro solaris_2 is defined to 1. When the target is a sun
sparcstation, the macros sun4 and sparc are defined to 1.

C.2 VxWorks target.

When the target is a VxWorks machine, the macro VxWorks is defined.

The macro Version is set to the VxWorks version number (either 5_0 or version 5.0 or 5_1 for
version 5.1). In addition, the macro VxWorks_version will be defined to 1. Here, version is the
value of the Version macro.

For a Sun host machine, the macro HOST_SUN will be defined to 1. The macro CPU will be
defined to the cpu type (MC68020, MC68030 etc.)

C.3 Vms targets

Under VMS, the macro vms will be defined to 1. On a vax, the macro vax will also be defined
to 1.

AAO/DRAMA_MAKE_10 52

D The dmakefile for Gcam

#BeginConfig

RELEASE=t0_1 /* Release of this system */

SYSTEM=gcam /* System name (for release */

EmbeddedOnly(TWODF=/home/aaossc/tjf/scratch/2dF)

INCLUDES=DramaIncl EmbeddedOnly(-I$(TWODF)/drivers)

USERCCOPTIONS = AnsiCFull() /* Enable Full Ansi C */

#EndConfig

NormalRules() /* Include normal c rules */

/*

* Objects to be put in the dits library.

*/

OBJECTS = Obj(gcam) Obj(gcamcentroid) Obj(vfg)

EmbeddedOnly(GRAB_OBJS = Obj($(TWODF)/drivers/grabberDrv) \

Obj($(TWODF)/drivers/pixel_box))

/*

* Sources for makedepend.

*/

SRC1= gcam.c gcamcentroid.c vfg.c

/*

* The target All will build the dits library, ticker and tocker and ditscmd

* On embedded systems, we also to libdits.o

*/

DummyTarget(All, includes Lib(gcam))

/*

* We use an includes target for include files which need to be built. This

* is only really necessary if makedepnds has not been run.

*/

DummyTarget(includes, gcam_err.h gcam_err_msgt.h vfg_err.h vfg_err_msgt.h gcam.h vfg.h gcaminfocreate.h)

/*

* Now the normal programs

*/

ErrorIncludeFiles(gcam_err)

ErrorIncludeFiles(vfg_err)

SdsIncludeFile(gcaminfocreate.h, gcaminfo.h)

/*

* The gcam object library

*/

ObjectLibraryTarget(gcam, $(OBJECTS),)

/*

AAO/DRAMA_MAKE_10 53

* The vfg program

*/

DramaProgramTarget(vfg, Obj(vfgmain), Lib(gcam), LinkLib(gcam) \

$(GRAB_OBJS) $(LIB_GIT),)

/*

* Release targets

*/

DramaReleaseCommon(gcam_err.h gcam_err_msgt.h gcam.h gcaminfocreate.h)

DramaReleaseCommon(vfg_err.h vfg_err_msgt.h .h)

DramaReleaseTarget(vfg,Lib(gcam),,)

DramaReleaseDramaStart()

/*

* Target to enable gcam.

*/

DramaEnable()

DramaDirs()

AAO/DRAMA_MAKE_10 54

References

[1] Jim Fulton, X Consortium. X11r5, Configuration Management in the X Window System.
MIT Laboratory for Computer Science. (available from X11r5/mit/hardcopy/config on the
X11r5 release tape).

[2] Tony Farrell, AAO. 21-Dec-1992, Guide to Writing Drama Tasks. Anglo-Australian Obser-
vatory DRAMA Software Document.

[3] Tony Farrell, AAO. (TO BE UPDATED), DRAMA Software Organisation. Anglo-
Australian Observatory DRAMA Software Document.

[4] Tony Farrell, AAO. (TO BE WRITTEN), DRAMA Software Installation. Anglo-
Australian Observatory DRAMA Software Document.

[5] Tony Farrell, AAO. 01-Jun-1993, Distributed Instrumentation Task System. Anglo-
Australian Observatory DRAMA Software Document.

