
ANGLO-AUSTRALIAN OBSERVATORY AAO/DRAMA_GUIDE_3
DRAMA Software Report 3
Version 0.4

Tony Farrell
05-Aug-93

Guide to Writing Drama Tasks

Contents

1 Introduction 3
1.1 The Tasking Model . 3

2 The Packages Available 5

3 Writing basic DRAMA Tasks 6
3.1 Status convention . 7
3.2 Making Coffee . 7

3.2.1 Getting started . 7
3.2.2 The Exit Action Routine . 9
3.2.3 The CoffeeMochaStage1 Action Routine 9
3.2.4 The CoffeeMochaStage2 routine . 11

3.3 Making Tea . 11
3.3.1 Setting Up . 11
3.3.2 The TeaLapSang action routine . 11
3.3.3 Kick routines . 14

3.4 Control Tasks . 15
3.4.1 Overview of CTEST . 15
3.4.2 Getting Paths . 15
3.4.3 Responding to Path Found messages . 17
3.4.4 Starting actions in other tasks . 19
3.4.5 Receiving the resulting messages . 20
3.4.6 Exiting . 21

3.5 User Interface Tasks . 22
3.5.1 The Dui routines . 23
3.5.2 The Ditscmd program . 23
3.5.3 X-Windows interface . 26
3.5.4 Other Input Sources . 32

4 Parameter systems 32
4.1 The Simple Dits Parameter System . 33

AAO/DRAMA_GUIDE_3 2

5 Object Orientated techniques 34
5.1 The Simple Spectrograph Task . 34
5.2 Activation routines . 36

6 Staging Library Routines 37

7 Other facilities available 41
7.1 Action context . 41
7.2 User and Action Data Routines . 41
7.3 DitsInitiateMessage . 42
7.4 Uface timers . 42

8 Include Files 42

9 Compiling, Linking and Running 42

10 Compatibilty with Starlink-ADAM 43

11 Software Organisation 43

A Example code 45
A.1 Coffee.c . 45
A.2 Tea.c . 45
A.3 CTest.c . 45
A.4 Ditscmd.c . 45
A.5 Object Oriented programming examples . 45

Revisions:

V0.0 03-Aug-1993 Update for new versions of [1] and [8]. Introduction of [9] and use of StatusType.

Introduce section on Staging procedures. Delete section on Software Organisation to be replaced
at some later stage by the unix equivalent.

AAO/DRAMA_GUIDE_3 3

1 Introduction

This document describes how to write programs using the DRAMA software environment.
DRAMA programs, known as Tasks, are normally used to control complex and distributed
instrumentation systems in a soft real time 1 environment, spread across machines of different
architectures and operating systems. In addition DRAMA could be used to implement any
distributed application in such an environment.

This document does not attempt to describe in detail the various packages which make up
DRAMA. It shows instead how these package are put together to produce a working system.
Each package is fully described an appropriate document.

1.1 The Tasking Model

A TASK is a software object which responds to and initiates messages. The object is normally
implemented as a separate process within a multiple process operating system such as VMS,
UNIX or VxWorks.

The Fixed Part is that part of a task common to all tasks. It provides the message system
interface, parameter system and controls action scheduling. The Application Part is that part
provided by the programmer to implement his specific application.

A Dits task is similar to a Starlink2 ADAM instrumentation task in its design. This style of
task design has been driven by several different requirements-

� A task responds to messages with/without arguments which may be sent from a number
of different sources. The message results in an action routine being invoked within the
task to respond to the message. This action routine is the part supplied by the application
programmer. An action has a name by which it is known outside the task.

� The task sends a completion message to the sender of the original message when the action
finishes. This should happen only when the thing initiated by the message has completed.
i.e., if the message initiates the moving of a mechanism, the action completes when the
mechanism has completed moving to the required position, not when the move has been
initiated.

� To avoid tying up the CPU, an action should not poll unless unavoidable. Instead it should
block to wait for incomming messages.

� It should be possible to accept additional messages in the same context as the original
message, for example abort messages.

� To make resource contention easier to handle a task should be able to handle multiple
actions simultaneously within the same process context. (This could be called a form

1The networking side of DRAMA may make it unsuitable for hard real time systems, i.e. systems where there
is considerable cost if a system does not respond on time. It may be possible to port the networking layer to such
a system, but the authors have not considered all the implications of such requirements

2Starlink is a project which provides computing support to U.K. Astronomy Community.

AAO/DRAMA_GUIDE_3 4

of multi-threading although the threads must control there time splicing explicitly). For
example when controlling an RS232 port it would be dangerous to allow multiple processes
to write at will to the port. It is easier and safer to send all messages intended for that
port to one process which can then manage access to the RS232 port.

� The tasking system should not rely on specialized operating system techniques which may
dramatically restrict portability. We currently require that it be ported to VAX/VMS,
UNIX and VxWorks. As long an an underlying message system can be provided, it
should be possible to run it on a machine.

� A task should be able to send messages to other tasks and user interfaces should be able
to be written without internal knowledge of the tasking system.

� It should be possible for messages, other than completion messages, to be sent to the
initiator of an action. For example, it should be possible to output informational and
error messages.

� The sending of messages should not cause a task to block waiting only for a response from
the target task. This would stop the task accepting messages, such as about messages,
from other tasks.

The above points results in a task with the following basic structure

loop until exit message received

read next message

initiate response to message

if not complete

then arrange a message to initiate the next stage (reschedule)

else

send completion message.

end loop

Of course this is simplistic. For example if the response to a message is CPU intensive it may
not be efficient to reschedule frequently. To support this, we supply the ability to determine if
a message is queued. A CPU intensive task can then reschedule only when it knows a message
is available.

Experience has led us to determine several events which may be required to cause a reschedule

� Simple action staging. This is when you simply wish to break a CPU intensive activity into
several parts to ensure the task can respond to other messages. When an action stages

a message is immediately queued to reschedule that action, which will be done after any
other messages already in the queue have been processed.

� Reschedule after a timer expiry. Similar to staging, but the reschedule message is not
queued for a certain period of time. (A stage just becomes a reschedule with a delay of
0). Such time expiry reschedules can be used to implement timeouts if required.

AAO/DRAMA_GUIDE_3 5

� Interrupt triggered reschedules. These may or may not be pure hardware interrupts.
Under VAX/VMS you probably want an AST (Asynchronous System Trap) to trigger a
reschedule, not the actual hardware interrupt. Under UNIX the equivalent is a software
signal.

� Reschedules triggered by the reception of messages from subsidiary tasks. A task can send
messages to other tasks (called subsidiary tasks). When such a message completes it is
desirable for the initiator to be told by rescheduling.

2 The Packages Available

The DRAMA environment implements the above tasking model in a portable way. It is written
entirely in C, but is optimized for each of the systems on which it runs. It currently only supports
systems which use the internet protocol for networking, but if required could be ported to any
other networking system.

DRAMA consists of the following packages-

DITS - The Distributed Instrumentation Tasking System is the core of the DRAMA software
environment. Dits enforces the basic structure of the task and interfaces it to the messages
system. Dits is described in [1].

IMP - The Interprocess Messages Passing System provides low level message passing primitives.
Imp is optimized to use the fastest possible message passing technique between tasks
running on the one machine. Additionally it transparently allows messages to be sent to
tasks on any other machine accessible via the internet network. It is described in [2].

SDS - The Self-defining Data System is a system which allows the creation of self-defining
hierarchical data structures in a form which allows data to be moved between different
machine architectures. It is described in [3].

ARG - The Argument Package is a simple package supplied as part of SDS. It provides simple
techniques for the building and interpreting of action arguments. See [3] for more details.

ERS - The Error Reporting System provides facilities for constructing and storing reported error
messages and for the delivery of those messages to the user via a technique appropriate to
the program being run. The Ers routines are described in [4].

MESS - The Portable Message Code System provides a utility program (MESSGEN) which
generates unique integer message codes. The Mess routines allow text to be associated
with each message code. The input file and message codes generated are compatible with
the VMSmessage utility. See [5] for more details.

SDP - The Simple Dits Parameter System is provided as part of Dits. It provides a simple
parameter system for dits tasks. See [1] for more details.

DMON - The Dmon routines provide a technique which allows remote monitoring of a task’s
parameters using an AAO Adam Utask interface running on a VAX. See [1] and [6] for
more details.

AAO/DRAMA_GUIDE_3 6

Ers

Mess Imp

Arg

Sdp

Dmon Dui

Sds

Dits

Figure 1: DRAMA layering diagram

DUI - The Dui routines provide techniques which assist the implementation of User interfaces.
See [1] for more details.

The Imp routines should not be used directly by application code as this may cause problems
with their use by Dits.

Figure 1 shows the layering of DRAMA.

3 Writing basic DRAMA Tasks

So how do you write a DRAMA task and what can it do? There are three broad classes of
DRAMA tasks. The most basic simply respond to external messages. They may for example
control an RS232 port, accepting messages which are simply sent to the RS232 port, with the
response being sent to the initiator of the message.

The next level up is the Control Task. This task may control one or more other DRAMA
tasks. Other than the job they do there is really little difference between the basic task and
Control task, although Control tasks are likely to be much more complex.

The final level is the User Interface Task. The major difference is that this task type is the
one to get things going. The basic and control task types only do something in response to an
outside message. As a result they always have somewhere to send the results of messages (such
as error reports). This is not true for User Interface Tasks. These will often send messages
to other tasks as a result of non message system events - such as the user typing a command.
Therefore user interface tasks must themselves handle getting the results back the to user.

In practice there is nothing to stop a single task performing all of the above functions although
the result may be clumsy.

We start off by looking at two examples of basic tasks, then follow up with a control task and
a simple user interface task.

AAO/DRAMA_GUIDE_3 7

3.1 Status convention

All routines provided by the tasking system will follow the Starlink status convention, i.e. each
routine will have as its last argument a status variable. Normally, if this status is not equal to 0
(STATUS__OK) the routine will return immediately. The routine can set the status to a non zero
value when it encounters an error. The error code should be a globally unique value calculated
using the equation

CODE = 134250498 + 65536× < fac > +8× < mes >

Here, < mes > is the message number (in the range 1 to 4095) assigned to the error condition
by the author of the subroutine library and < fac > is the facility number (in the range 1 to
2047) allocated to this subroutine library by the ADAM Support Group. See [5] for details on
how to generate such error codes.

Status varibables should be of type StatusType, defined in the status.h include file. Sta-
tusType will be the smallest integer type large enough to store the status code.

An exception to this convention is made for functions returning a single value which will always
be valid. Such functions do not require a Status argument. Some error handling functions may
also need to handle status differently to obtain the desired effects.

3.2 Making Coffee

The Coffee task is an very simple example of a DRAMA task. It responds to six different
commands (also known as actions). The EXIT command causes the program to exit. All tasks
should support the EXIT message. The MOCHAn commands (n = 1 to 5) output a couple of
messages at timed intervals and exit. The full code for coffee.c can be found in appendix A.1.

3.2.1 Getting started

Normally, when a C program starts up the function main() is called by the C run time library.
Main() is the main program of a C program. Unfortunately, not all systems use a main()
routine. In systems such as VxWorks all programs must have unique entry points. The
folowing bit of code handles this complexity. It is only compiled on systems which need a
main(). It just transfers control to the coffee() routine which does the actual initialisation.

int coffee();

#ifdef DITS_MAIN_NEEDED

extern int main()

{

return(coffee());

}

#endif

To set up Dits, a Dits task would normally call

AAO/DRAMA_GUIDE_3 8

1. DitsInit() - To initialise dits.

2. DitsPutActionHandlers() - To associate action names with functions.

3. DitsMainLoop() - To handle incoming Dits messages.

4. DitsStop() - To shutdown dits.

In coffee, it looks like this:-

int coffee()

{

StatusType status = STATUS__OK;

DitsInit("COFFEE",BufSize,0,&status);

DitsPutActionHandlers(ActionMapSize,ActionMap,&status);

DitsMainLoop(&status);

return(DitsStop("COFFEE",&status));

}

The Task Name - A task must have a name by which it is known to the message system. It
is also used in error messages output by the task. In this case - ”COFFEE”. Note we supply to
task name to both DitsInit() and DitsStop() since if DitsInit() failed earily in its sequence,
the error output routines in DitsStop() may not have the taskname available.

The length of this name should be less than the constant DITS_C_NAMELEN (20 characters)
including the null terminator.

ActionMap and ActionMapSize - ActionMap is an array which maps action names to
routines. Action names are the names of the commands which the task is prepared to accept.
For each action you must define -

� The Routine to be called when an Obey message is received. An Obey message is sent by
one task to another to start the action in the second task.

� The Routine to be called when a Kick message is received. If an action is already active, a
Kick message is used to influence the operation of the action, such as to request an abort.

� A user defined code. This code will be available to the action when it is run. Any long
integer value can be specified. It could be used to differentiate actions which use the same
routine.

� The name for the action. This can be up to DITS_C_NAMELEN characters (currently 20).

We must also define the length of the array (the number of actions).

In coffee we define them as follows-

AAO/DRAMA_GUIDE_3 9

DitsActionMapType ActionMap[] = {

{CoffeeMochaStage1, 0, 1, "MOCHA1" },

{CoffeeMochaStage1, 0, 2, "MOCHA2" },

{CoffeeMochaStage1, 0, 3, "MOCHA3" },

{CoffeeMochaStage1, 0, 4, "MOCHA4" },

{CoffeeMochaStage1, 0, 5, "MOCHA5" },

{CoffeeExit , 0, 0, "EXIT" }

};

int ActionMapSize = sizeof(ActionMap)/sizeof(ActionMap[0]);

Note the CoffeeMochaStage1() and CoffeeExit() are routine names. We don’t have Kick
routines, indicating that none of these actions accept kick messages.

BufSize - This variable is used as the bytes argument to DitsInit(). To work out this value
you should first determine the size required to allocate all the buffers to be used in messages sent
to this task. These buffers are allocated by DitsGetPath(). This value should be increased
by about 70% to allow for overheads. We look more into DitsGetPath() later. For a task like
COFFEE an appropriate value is about 5000 Bytes.

int BufSize = 5000;

3.2.2 The Exit Action Routine

The routine CoffeeExit() is very simple, being nothing more than-

static void CoffeeExit(StatusType *status)

{

DitsPutRequest(DITS_REQ_EXIT,status);

}

All this routine does is request that the task exit. We do not bother with the normal status
check on entry since this is done by DitsPutRequest(). The exit status of the task is the value
of status that the routine exits with, which in this case will always be ok.

3.2.3 The CoffeeMochaStage1 Action Routine

This routine will be called when a message for any of the MOCHAn actions is received. All it
does is output a message and then reschedule.

static void CoffeeMochaStage1(StatusType *status)

{

char name[DITS_C_NAMELEN]; /* For the name of the action */

DitsDeltaTimeType delay; /* To calculate the delay */

int seconds;

AAO/DRAMA_GUIDE_3 10

if (!StatusOkP(status)) return;

/*

* First the the name of the action is output in a message

*/

DitsGetName(sizeof(name),name,status);

MsgOut(status,"Starting %s action",name);

/*

* Use the code for this action as the action delay (just for fun)

*/

seconds = DitsGetCode();

DitsDeltaTime(seconds,0,&delay);

/*

* Put the delay and request it

*/

DitsPutDelay(&delay,status);

DitsPutRequest(DITS_REQ_WAIT,status);

/*

* Use the Stage2 handler for the next stage of this action.

*/

DitsPutHandler(CoffeeMochaStage2,status);

}

The macro function StatusOkP() will return true if its argument (a pointer to a StatusType)
is equal to STATUS__OK. A similar macro function - StatusOk() - exists. Its argument is a plain
StatusType, not a pointer.

The DitsGetName() function is used to get the actual name of the action, which is output
to the user using MsgOut(). Note that the second and subsequent arguments to MsgOut()
work the same way as the first and subsequent arguments to the C Run-Time library function
printf(). You should not use any special characters, such as \n or \003, since the meaning of
these characters is dependent on the user interface in use.

The routine DitsDeltaTime() converts a time in seconds and microseconds into a value which
can be used in a call to DitsPutDelay(). The delay (in seconds) that we use is simply the
number specified as the code for this action in the DitsMap array. We get this by calling
DitsGetCode(). It could be any valid value.

After putting the action delay we want, we request that the action be rescheduled using Dit-
sPutRequest() with a request of DITS_REQ_WAIT. While this request is outstanding additional
obey messages for this action will be rejected.

The last call, to DitsPutHandler(), is used to set the name of the routine to be called on the
next entry to this action. The entry will occur when the delay expires. We do not have to call
DitsPutHandler(), in which case, the same routine will be called again and we could use the
sequence number returned by DitsGetSeq() to differentiate each entry. This number is set to
0 when a new invocation of the action is started and is incremented by one for each reschedule
of the action. DitsPutHandler() is a bit more efficient and may allow a more appropriate and

AAO/DRAMA_GUIDE_3 11

neater program structure. (The efficiency effect increases as the program structure gets more
complex).

3.2.4 The CoffeeMochaStage2 routine

This routine is called as a result of a reschedule of an action. It just outputs a message and
exits.

static void CoffeeMochaStage2(StatusType *status)

{

char name[DITS_C_NAMELEN];

if (!StatusOkP(status)) return;

DitsGetName(DITS_C_NAMELEN,name,status);

MsgOut(status,"Finishing %s action",name);

}

Note that no call to DitsPutRequest() is made. The default request is DITS_REQ_END which
indicates the action is to complete and a completion message sent to the originator of the action.
The status of the completion message is the value of status on exit from this action.

3.3 Making Tea

The Tea task is a more complex example. The source code can be found in appendix A.2.

3.3.1 Setting Up

In the tea Task, the ActionMap looks like this-

DitsActionMapType ActionMap[] = {

{TeaLapSang, TeaLapSangKick, LAP1, "LAPSANG1" },

{TeaLapSang, TeaLapSangKick, LAP2, "LAPSANG2" },

{TeaLapSang, TeaLapSangKick, LAP3, "LAPSANG3" },

{TeaLapSang, TeaLapSangKick, LAP4, "LAPSANG4" },

{TeaLapSang, TeaLapSangKick, LAP5, "LAPSANG5" },

{TeaExit , 0, 0, "EXIT" }

};

In addition to the Obey routines (TeaLapSang()) we also have a Kick routine - TeaLapSang-
Kick(). The names LAP1 to LAP5 are just macros which define the codes for each action.

3.3.2 The TeaLapSang action routine

The TeaLapSang() routine is called for all entries of all actions except when responding to
Kick messages. In order to differentiate the actions, it uses the action code, fetched with -

AAO/DRAMA_GUIDE_3 12

long int code = DitsGetCode();

It uses the action sequence number to determine which entry of the action, using code like this-

long int seq = DitsGetSeq();

...

if (seq == 0)

{

/* Do this on the first entry of an action */

}

else

{

/* Do this on all other entries of an action */

}

The LAPSANG1 Action - The first entry of the LAPSANG1 action first writes a mes-
sage using MsgOut() (which is common to all the actions) and then reports an Error using
ErsRep(). ErsRep() is similar to MsgOut(). The first argument is a flag mask indicating to
the user interface how the message should be displayed. The possible values are

Flag Meaning

ERS_M_NOFMT Don’t format the string. Any formating arguments are ig-
nored and the format string is used as specified.

ERS_M_HIGHLIGHT Suggest to the user interface that the message should be
highlighted.

ERS_M_BELL Suggest to the user interface that the terminal bell (or an
equivalent) should be rung when the message is output.

ERS_M_ALARM Suggest to the user interface that the user should acknowl-
edge this message.

These flags are really only hints to the user interface. A simple user interface may ignore them.

The second argument is status, but this does not work in the normal way. ErsRep() will work
regardless of the value of status and the value of status is included in the message sent to the
user interface, where it may or may not be used.

The third and fourth arguments are again similar to the first and second arguments to the C
Run-time library routine printf().

After calling ErsRep(), ErsFlush() is called. This routine will cause any messages reported
by ErsRep() to be flushed to the user interface. It is normally only called if code wishes to
continue after an error but wishes reported error messages to be displayed. Use ErsAnnul() to
cancel error messages. Both these routines will clear status. See [4] for more details.

The action then reschedules at an interval based on the action code. When the reschedule occurs
(seq > 0) the action outputs a messages and completes.

The LAPSANG2 and LAPSANG5 Actions - These two actions simply output a message
and reschedule once. The output another message and complete.

AAO/DRAMA_GUIDE_3 13

The LAPSANG3 action - This works the same as LAPSANG2 except that it attempts to
get the value of its argument. Action arguments are SDS items constructed by the task which
sent the message. The lines-

DitsArgType argId = DitsGetArgument();

ArgGeti(argId,"COUNT",&count,status);

first fetches the SDS id of the argument to this action. It then tries to find the the value of an
item in this structure named “COUNT”. The “i” in the name ArgGeti() indicates the value
should be returned as an integer, being converted if necessary and possible.

We can also send arguments with a completion message. This is done by using the ARG routines
to construct the argument and DitsPutArgument() to notify Dits of it. The argument is
only sent if the action completes on this entry.

The next bit of code indicates how we handle errors -

if (!StatusOkP(status))

{

char errmess[100];

MessGetMsg(*status,0,sizeof(errmess),errmess);

ErsOut(0,status,"LAPSANG3:Error getting argument, status = %s",errmess);

}

The routineMessGetMsg() is used to fetch any text which was associated with the status code.
We then use ErsOut() to report the error. ErsOut() is the same as a call to ErsRep() followed
by a call to ErsFlush(). We used it because we wish to continue the action regardless of this
error. You could also use DitsErrorText() instead of MessGetMsg(). DitsErrorText()
returns a pointer to the message, which is held in an interal buffer which is overwritten by
subsequent calls. See [1] for details.

MessGetMsg() only knows about the error codes registered with MessPutFacility(). Dits
registers the error codes for all the packages mentioned above, but you must explicitly register
the error codes for any other facility used. See [5] for more details.

The LAPSANG4 action - On its first entry LAPSANG4 works the same as LAPSANG2,
but its second and subsequent entries are handled differently. This action will reschedule a
number of times (depending on the value supplied as an argument to LAPSANG3) and each
time it calls DitsTrigger() as follows-

if (seq <= 1)

DitsDeltaTime(0,200,&delay);

DitsTrigger(0,status);

if (!StatusOkP(status))

{

char errmess[100];

MessGetMsg(*status,0,sizeof(errmess),errmess);

AAO/DRAMA_GUIDE_3 14

ErsRep(0,status,"LAPSANG4:Failed to trigger control task, status = %s",

errmess);

}

else

{

DitsPutDelay(&delay,status);

DitsPutRequest(DITS_REQ_WAIT,status);

}

The routine DitsTrigger() sends a message to the originating task of the message which started
this action, causing the originating action to reschedule. The first argument to DitsTrigger()
is an id of an SDS item to be sent as part of the message. The originator can retrieve this. By
suppling a value of 0 as the argument we are indicating that there is no value to be sent.

DitsTrigger() actually works in a similar way to MsgOut() and ErsFlush(), but unlike the
later two which are intended to send messages to the user, DitsTrigger() is intended to send
messages to the originating action.

Another interesting point about this bit of code is that the call to DitsDeltaTime() is only
made once. As the same value is used each time, we use a static variable and calculate the delay
once only.

3.3.3 Kick routines

Kick routines are called in the context of action which is already active. They are normally
used to cause the action to abort, but may have other uses, such as changing the way an action
works.

TeaLapSangKick() does very little -

static void TeaLapSangKick(StatusType *status)

{

long int code = DitsGetCode();

DitsDeltaTimeType delay;

if (!StatusOkP(status)) return;

MsgOut(status,"Action LAPSANG%d Kicked",code);

DitsDeltaTime((code/2),0,&delay);

DitsPutDelay(&delay,status);

DitsPutRequest(DITS_REQ_WAIT,status);

}

simply outputting a message and rescheduling. A Kick routine can do one of three things-

1. Reject or ignore the Kick. If a Kick routine does not call DitsPutRequest(), then the
normal sequence of the action will not be changed. By setting status to something other
than STATUS__OK, an error message is sent to the originator of the Kick message. If status
is not set, then no message is sent to the originator.

AAO/DRAMA_GUIDE_3 15

2. Cause the action to abort. By using DitsPutRequest() to put a request of either DIT-
S_REQ_END or DITS_REQ_EXIT, the action will terminate. In the later case the task will
exit. The status returned by the Kick routine will be the exit status of the action.

3. Cause the action to reschedule in a different way. By using one of the other requests, such
as DITS_REQ_WAIT, the Kick can cause the action to alter its rescheduling. This is useful if,
when aborting an action, you must wait for hardware to abort correctly before the action
can completes.

3.4 Control Tasks

Control tasks are used to coordinate a number number of different basic tasks. For example you
may have a detector and spectrograph system which are independent at the physical level, but
are to be used together. A control task may coordinate the operation of the detector system
with the spectrograph, making sure the detector is not exposed in the middle of configuring the
spectrograph.

This section looks at some of the techniques used to write control tasks. The program we look
at, used to control the Tea and Coffee tasks, is listed in full in appendix A.3.

3.4.1 Overview of CTEST

This control task only supports two actions, the standard EXIT action and BREW, which
does the real work. BREW does not support kick messages.

The BREW action is responsible for the following activities-

� Getting paths to the Tea and Coffee tasks.

� Obeying actions MOCHAn (n = 1 to 5) in task Coffee.

� Obeying actions LAPSANGn (n = 1 to 5) in task Tea.

� Responding to any messages sent by the Tea and Coffee tasks.

� Handling the completion messages of the actions started in Tea and Coffee.

3.4.2 Getting Paths

A Path is a two way communications link to another task. To be able to send a message to
another task we must have a path to that task. We use the DitsGetPath() function to get a
path to a task. The routine CTestFindPaths() contains the following calls-

DitsGetPath("TEA",MESSAGEBYTES,MAXMESSAGES,REPLYBYTES,MAXREPLIES,

&teaPath,&teaTransid,status);

DitsGetPath("COFFEE",MESSAGEBYTES,MAXMESSAGES,REPLYBYTES,MAXREPLIES,

&coffeePath,&coffeeTransid,status);

AAO/DRAMA_GUIDE_3 16

The first argument is the name of the task (TEA or COFFEE). This must be the name the task
specified when it called DitsInit() If the task is on a remote machine use the format task@node
where node is the internet address (by name or internet number) of the node on which the task
is running.

The second argument specifies the maximum size in bytes of messages to be sent to that task,
while the third is the number of such messages which may be sent before the target can get
around to responding. If you multiply these two values and add a factor for overhead (say 20 to
30%), you will obtain the amount of space which will be allocated in the message buffer of the
target task. The target must have allocated this much space for each task which will connect
to it. This is done by the target when it calls DitsInit() I used a value of 400 for the size of a
message. This is plenty for Obey or Kick messages with simple arguments containing one or two
scaler values. Since five such messages are sent to the target in quick succession, MAXMESSAGES
is set to five.

The fourth and fifth arguments are similar to the second and third, except that they indicate
the space to be allocated in this task for messages sent from the target task to this task. This
may include in addition to action completion messages, messages sent with MsgOut() and
ErsFlush(). The later may be quite long so 800 seems an appropriate value for REPLYBYTES

while experience suggests 12 as an appropriate value for the number of replies in this example.

At this stage you can work out appropriate values for the Bytes argument to DitsInit(). In
the target tasks (Tea and Coffee) we need about 400 x 5 = 2000 Bytes + overhead. Thus in
the order of 3000 Bytes are required. I went to 5000 just to be sure. In this task we need 800
x 12 x 2, plus about 1000 for the task which sends BREW command, about 20000. Just to be
sure use 30000.

The sixth argument to DitsGetPath() is the address of a variable of type DitsPathType. If
DitsGetPath() returns with status ok this address will contain the path. The path variable
may or may not be valid at this point. If we have previously obtained a path to this task the
path will be valid and can be used immediately to send messages to the target task. If we have
not previously obtained a path to this task a network transaction will be required to set it up.
The value returned in the path argument is the correct path, but cannot be used until this
transaction has completed.

The seventh argument is the one concerned with this network traffic. Most Dits routines which
initiate message transactions have an argument of this type. It is known as the “transaction
id”. You should supply the address of a variable of type DitsTransIdType. In the case of
DitsGetPath(), if a value of zero is returned as the transaction id no network transaction is
required to set up the path. If a non-zero path is required a network transaction is required.
The action must reschedule to await its completion. As you may initiate many transactions in
one entry you may need the transaction id to differentiate the various transactions.

So there are two cases after a successful call to DitsGetPath() depending on whether the
transaction id is zero or non zero. In the later case we must reschedule to await the completion
of the transaction. CTest handles it like this-

if ((teaTransid == 0)&&(coffeeTransid == 0))

{

AAO/DRAMA_GUIDE_3 17

DitsPutHandler(CTestStartActions,status);

DitsPutRequest(DITS_REQ_STAGE,status);

}

else

{

/*

* Put the handler for the next stage, which will occur when either

* the path is found OR the timeout expires, which ever comes first.

*/

if (TIMEOUT > 0)

DitsPutDelay(&timeout,status);

DitsPutHandler(CTestPathFound,status);

DitsPutRequest(DITS_REQ_MESSAGE,status);

}

If we have both paths immediately the task just continues. It does this by setting a new handler
for the next entry of this action, requesting an action stage and then returning. We could have
called CTestStartActions() directly but the above technique is cleaner and in a complex task
would allow other messages to be handled.

In the second case we reschedule to await the completion of the transactions started by Dits-
GetPath(). We use DitsPutDelay() set up a timeout on getting the path.

3.4.3 Responding to Path Found messages

If we had to wait for the get path transaction to complete, then CTestPathFound() will be
the next routine called. When it is called the routine DitsGetReason() will return the reason
for the entry the status associated with the entry.

There are only three possible reasons at this stage-

1. The timeout set up above has been triggered. The reason code will be DITS_REA_RESCHED.
Either we have underestimated the timeout or something is wrong. In either case we want
to report the error and exit the BREW action. In order for the originator of the BREW
action to know that something is wrong we should return a non-zero status. We could have
created our own message facility (see [5]) but this is a bit complex for such a simple task.
To help, Dits provides two codes for use by applications. DITS__APP_TIMEOUT is used in
this case. The associated text indicates an application timeout. The other code available
is DITS__APP_ERROR which indicates a non-specific application error. Always report an
error using ErsRep() when you set status to one of these codes. The associated code in
CTest is-

if (reason == DITS_REA_RESCHED)

{

*status = DITS__APP_TIMEOUT;

ErsRep(0,status,"Timeout trying to get paths");

}

AAO/DRAMA_GUIDE_3 18

2. We were unable get a path to a task. This would normally only occur if a remote task does
not exist, if an error occurs setting up the connection or if the target task dies or rejects
the connection. If a local task does not exist then DitsGetPath() would have returned
an error.

The variable reasonstat returned by DitsGetReason() will contain a status code indi-
cating a reason for the error. We may also want other information such as the name of
the task which died, the transaction id of the outstanding transaction and the path to the
task which died. We can use DitsGetEntInfo() to get this information. In CTest we
handle it as follows-

else if (reason != DITS_REA_PATHFOUND)

{

char errmess[100];

char name[DITS_C_NAMELEN];

DitsTransIdType transid;

DitsPathType path;

DitsGetEntInfo(sizeof(name),name,&path,&transid,&reason,

&reasonstat,status);

MessGetMsg(reasonstat,0,100,errmess);

*status = reasonstat;

ErsRep(0,status,"Failed to get path to task %s: %s",name,errmess);

}

Note that the actual reason code at this point should be DITS_REA_PATHFAILED, but we
use this bit of code as a catch-all just to be careful.

3. We have successfully got a path to a task. Again, DitsGetEntInfo() can be used to get
the details. CTest handles is like this-

else /* reason = DITS_REA_PATHFOUND */

{

char name[DITS_C_NAMELEN];

DitsTransIdType transid;

DitsPathType path;

DitsGetEntInfo(sizeof(name),name,&path,&transid,&reason,

&reasonstat,status);

if (path == teaPath)

teaTransid = 0;

else

coffeeTransid = 0;

if ((teaTransid == 0)&&(coffeeTransid == 0))

{

DitsPutHandler(CTestStartActions,status);

DitsPutRequest(DITS_REQ_STAGE,status);

}

AAO/DRAMA_GUIDE_3 19

else

{

if (TIMEOUT > 0)

DitsPutDelay(&timeout,status);

DitsPutRequest(DITS_REQ_MESSAGE,status);

}

}

If we now have both paths we just stage to CTestStartActions(). Otherwise we reset
the timeout and wait for the next message.

3.4.4 Starting actions in other tasks

The CTestStartAction() routine actually starts the various actions in the Tea and Coffee
tasks. The routine used to do this is DitsObey(). The call -

DitsObey(coffeePath,name,0,&transid,status);

starts an action in the coffee task. The first argument is the path to the coffee task, obtained
using DitsGetPath(). The second argument is the name of the action to start, in this case one
of MOCHAn where n = 1 to 5. The third argument to the call is the argument to the action.
There is no argument here, so we specify zero. The fourth argument is the id of the resulting
transaction.

Remember that the LAPSANG3 action in the Tea task supports an argument. The following
code is used to construct and send that argument-

DitsArgType id;

ArgNew(&id,status);

ArgPuti(id,"COUNT",TEAARG,status);

DitsObey(teaPath,name,id,&transid,status);

SdsDelete(id,status);

SdsFreeId(id,status);

The ArgNew() function creates a new argument returning the identifier to it. ArgPut() will
create a new integer element named “COUNT” and put the value specified into it, assuming
“COUNT” does not already exit. If “COUNT” already existed as a scaler item, the value is
converted if necessary and put into that item. We then specify the id in the call to DitsObey().
If we are not going to use the argument id again, its a good idea to delete it. Since the
argument id is nothing more then a SDS id, and ARG does not provide deletion routines, we
use SdsDelete() and SdsFree() to tidy up.

So what do we do once we have started (subsidiary) actions in another (subsidiary) task? The
subsidiary task can send various messages to our task in the context of subsidiary action. There
are five types of messages which may be sent -

AAO/DRAMA_GUIDE_3 20

� Transaction completion messages - These indicate the subsidiary action has completed.
After one of these is received there will be no more messages from the subsidiary action -
the transaction is complete.

� Transaction failure messages - These indicate there was some error in starting the sub-
sidiary action, such as the task does not support an action of that name. After one of these
is received there will be no more messages from the subsidiary action - the transaction is
complete.

� Trigger messages - These messages are sent by the subsidiary action calling DitsTrigger().
They allow complex communication between the parent and subsidiary actions.

� Informational Messages - These messages are sent by the subsidiary action when Ms-
gOut() is called. They are normally forwarded automatically to the parent of the parent
action and so forth, until they reach the user interface to the system. It is possible to
intercept them if required.

� Error Messages - These messages are sent by the subsidiary action when ErsFlush()
or ErsOut() are called. They are normally forwarded automatically the parent of the
parent action and so forth, until they reach the user interface to the system. It is possible
to intercept them if required.

To await these messages your task must reschedule in the same way that is done to wait for get
path transactions to complete -

if (TIMEOUT > 0)

DitsPutDelay(&timeout,status);

DitsPutRequest(DITS_REQ_MESSAGE,status);

DitsPutHandler(CTestResults,status);

The handler CTestResults() will be called whenever a message is received relating to the out-
standing transactions. As mentioned above, some messages are handled automatically without
your handler routine being called. You can change this using DitsInterested() and DitsNot-
Interested().

It is considered inappropriate for a task to complete with outstanding transactions. Either you
can keep track of them yourself, as CTest does, or the function DitsCheckTransactions()
can be used to check for them.

3.4.5 Receiving the resulting messages

When your handler is called you can again use DitsGetReason() to get the reason for the
entry. See the [1] for a list of all the possible reasons for an entry. The CTest task only expects
the following -

1. The timeout has expired. See section 3.4.3 for more details.

2. A trigger message is received. This is caused by a subsidiary action calling DitsTrigger().

AAO/DRAMA_GUIDE_3 21

3. An action has completed. We can use DitsGetEntInfo() to get the path and id of the
transaction. Reasonstat will contain the exit status of the action.

4. An action was rejected. Again we can use DitsGetEntInfo() to get the path and trans-
action id of the transaction completing. Reasonstat will contain the status associated
with the failure.

5. A task to which there is an outstanding transaction has died. There will be one entry for
each outstanding transaction and those transactions will be considered complete when the
entry returns. Again use DitsGetEntInfo() to get more information, including in this
case, the name of the task which has died.

For all the other possibilities CTestResult() calls the routine DitsPrintReason(). This
routine will use ErsRep() to output the details of the entry including, if appropriate, the
associated status.

Once the first completion message has been received CTest() sends a kick message to the Tea
task’s LAPSANG5 action, just to demonstrate the use of DitsKick(), as follows-

DitsKick(teaPath,"LAPSANG5",0,&transid,status);

The technique is very similar to sending an obey.

3.4.6 Exiting

The CTest exit action is slightly more complex then the Tea and Coffee tasks, as it also sends
exit commands to these tasks, before causing itself to exit -

DitsObey(teaPath,"EXIT",0,0,status);

*status = STATUS__OK;

DitsObey(coffeePath,"EXIT",0,0,status);

*status = STATUS__OK;

DitsPutRequest(DITS_REQ_EXIT,status);

We don’t supply a transaction id to the DitsObey() calls. As a result we cannot find out if the
action fails, does not exist, etc. DitsSend() is useful in this case as we don’t really want the
complexity of waiting around for the subsidiary actions to exit, but be careful when using it.

If the path used in a call to DitsSend() (or any message sending routine) is either 0, or is
invalid (the task died or the path was not found), then status will be set bad. By making use
of this fact we can avoid working out if we have actually got a good path to send the EXIT
action along.

AAO/DRAMA_GUIDE_3 22

3.5 User Interface Tasks

In the tasks we have seen so far, the CTest task starts actions in the Tea and Coffee tasks.
Messages from the subsidiary tasks are sent to CTest. But how are the actions in CTest started
and where at its messages sent?

There must be some task, some where in the system, which acts as a user interface. User
interfaces to Dits must be able to-

� Accept commands from the user in an appropriate way (i.e. command line, windowing
system etc.).

� After interpreting those commands, start actions in appropriate Dits tasks.

� Handle the responses returned by those actions, outputting messages for the user as nec-
essary.

Dits provides the following features to support user interface construction-

� User interface context - Normally a task can only initiate messages to other tasks in the
context of an action routine. This is necessary to ensure that messages from that action
are directed to an appropriate place (the parent action). In a user interface there is no
parent action. Dits provides special support for this by the provision of the DitsUfaceC-
txEnable() routine. This routine enables a special context appropriate for user interfaces.
The routine specifies a handler (or response) routine. When any transactions started af-
ter calling this routine complete the handler routine is invoked. The handler routine will
receive all messages including error and informational messages. DitsNotInterested()
cannot be used. For more details see [1]

� A default user interface response routine is provided. DitsUfaceRespond() can be spec-
ified as the argument to DitsUfaceCtxEnable() or it can be called directly as part of a
user’s response routine. This is normally done when the user considers the default handling
(output of a message) sufficient for a particular message.

� The routines (DitsMsgReceive() and DitsMsgAvail()) can be called directly instead
of via DitsMainLoop(). This allows appropriate interaction with other sources of input.

� The underlying message system may provide support of various message notification tech-
niques.

The most basic user interface is one which sends a single action message to a task and waits for
the completion message while outputting any error or informational messages sent.

A program to do this, ditscmd, is provided as part of Dits. To start the BREW action in
Ctest, we would enter

ditscmd CTEST BREW

See [1] for more details on this command and its options 3.

3Note that under VAX/VMS, you should use ditscmd "CTEST" "BREW". The quotes are needed to stop the
VAXC run time library converting the task and action names to lower case. Under VxWorks, you should enclose
all the arguments in double quotes, e.g. ditscmd "CTEST BREW" since arguments are not handled as neatly.

AAO/DRAMA_GUIDE_3 23

3.5.1 The Dui routines

Dits provides considerable flexibiltiy in user interface construction but it was found when build-
ing those user interfaces which are part of Dits that there is considerable in common between
most user interfaces. This led to the Dui routines being developed.

As a result, this document does not go into the details of the DitsUface routines but instead
looks at the the use of the Dui routines.

3.5.2 The Ditscmd program

We will have look at some of the details of the implementation of ditscmd. The full source is
in appendix A.4.

ditscmd is complicated by having to handle command line options in two formats. Under
UNIX or VMS, we use the getopt() routines. Under VxWorks we use the DuiToken
routines4. As a result, the option handling differs depending on whether we need a main()
routine or not.

The basic structure is as follows-

DuiDetailsType details;

.

.

.

DuiDetailsInit(&details);

details.MesasgeBytes = MESSAGEBYTES;

details.ReplyBytes = REPLYBYTES;

details.MAXREPLIES = MAXREPLIES;

.

.

strncpy(details.TaskName,argv[optind++],sizeof(details.TaskName));

strncpy(details.Action,argv[optind++],sizeof(details.Action));

/*

* If any arguments are supplied, get them and create an Arg structure.

*/

if ((optind < argc)&&StatusOk(status))

{

register i;

ArgNew(&details.ArgId,&status);

for (i = 1; optind < argc ; optind++, i++)

{

char argname[20];

sprintf(argname,"Argument%d",i);

ArgPutString(details.ArgId,argname,argv[optind],&status);

}

4Since the C run time library routine strtok() is not reentrant, we cannot use it.

AAO/DRAMA_GUIDE_3 24

}

details.ErrorHandler = ErrorHandler;

details.SuccessHandler = SuccessHandler;

DitsInit(thisTask,bufsize,0,&status);

DuiExecuteCmd(&details,&status);

DitsMainLoop(&status);

return(DitsStop(thisTask,&status));

The lack of a call to DitsPutActionHandlers() is because this program does not accept any
obey messages from other tasks.

Most of the work here is by DuiExecuteCmd() using the items passed in the details structure.
In this case, we specified the following-

MessageBytes As per DitsGetPath() argument of the same name.
ReplyBytes As per DitsGetPath() argument of the same name.
MaxReplies As per DitsGetPath() argument of the same name.
TaskName The name of the task to send the message to (including the node

name, if any), in the format required by DitsGetPath().
Action The action or parameter name for the message
ArgId An argument structure to be passed to the action
MsgType The type of the message to be sent. This is one of

DITS_MSG_OBEY Send an obey message.

DITS_MSG_KICK Send a kick message.

DITS_MSG_GETPARAM Send a get parameter message.

DITS_MSG_SETPARAM Send a set parameter message.

DITS_MSG_CONTROL Send a control message.

AAO/DRAMA_GUIDE_3 25

ErrorHandler A routine to be called if the action completes with an error. The
error handler looks like this-

int ErrorHandler(DuiDetailsType *details,

StatusType *status)

{

DitsReasonType reason;

StatusType reasonstat;

if (*status != STATUS__OK) return(0);

DitsGetReason(&reason,&reasonstat,status);

DitsPutRequest(DITS_REQ_EXIT,status);

if (*status == STATUS__OK)

*status = reasonstat;

return(1);

}

If this routine had returned 0, then a message would have been
output using ErsOut, but nothing else. Since in ditscmd we don’t
expect any more messages, we want to request that the program
exit. Additionally, by setting status to the value returned in Dits-
GetReason, DitsMainLoop will return with status set to this value.
We can then pass this status to DitsStop where it is treated as the
completion status of the program.

SuccessHandler A routine to be called if the action completes successfully.
The success handler looks like this-

int SuccessHandler(DuiDetailsType *details,

StatusType *status)

{

DitsArgType ArgId = DitsGetArgument();

StatusType ignore = STATUS__OK;

if (*status != STATUS__OK) return(0);

if (ArgId)

{

char buffer[200];

int length = 0;

ArgToString(ArgId,sizeof(buffer),

&length,buffer,status);

buffer[length] = ’\0’;

if (*status == ARG__NOTSCALAR)

{

*status = STATUS__OK;

MsgOut(status,

"Non scaler argument returned");

}

else if (*status == STATUS__OK)

MsgOut(status,buffer);

}

DitsPutRequest(DITS_REQ_EXIT,&ignore);

return(1);

}

This is similar to the Error handler. The major difference we that
we try to convert any argument value in the completion message
to a string and output it.

AAO/DRAMA_GUIDE_3 26

The following items are also available in details

ArgFlag What to do with the Argument. See the flag argument to
DitsPutArgument(). Default value is DITS_ARG_DELETE

Node Provides an alternative way for specifing the Name of the
Node the target task is running on. If used, TaskName
must not include a node specifcation.

TriggerHandler Called when a trigger message is received.
InfoHandler Called when an Informational message (generated by Ers or

MsgOut()) is received.
CompletionHandler Called whenever an action completes.
UserData A pointer to void. The user can store anything required here

and retrieve it in the various handler routines.
MaxMessages As per the DitsGetPath() argument of the same name.
GetPathTimeout The timeout to apply to get path operations. Default value

of -1 = no timeout.
Timeout The timeout to apply to actual messages. Default value of

-1 = no timeout.

3.5.3 X-Windows interface

TheDui routines can also be used to build an X-Windows/Xt based user interface. The following
code is taken from the xditscmd program, a simple X-Windows command interface for Dits.

extern int main(unsigned int argc, char **argv)

{

StatusType status = STATUS__OK; /* Routine status */

int condition; /* condition for XtAppAddInput */

int source; /* source for XtAppAddInput */

Widget toplevel; /* Toplevel widget */

/*

* Initialize the X toolkit, get top level widget.

*/

XtSetArg(args[0], XtNallowShellResize, TRUE);

toplevel = XtAppInitialize(&context,"Xditscmd",NULL,0,&argc,argv,

fallback_resources,args,1);

.

.

.

/*

* Setup Dits.

*

* We initialise requesting X compatiblity and no sds for local messages.

*/

AAO/DRAMA_GUIDE_3 27

DitsInit(thisTask,XdcBuffersGlobal(),DITS_M_X_COMPATIBLE|

DITS_M_NO_LOCAL_SDS,&status);

DitsGetXInfo(&source,&condition,&status);

/*

* Enable the routines for outputing Ers and MsgOut messages

*/

DitsUfacePutErsOut(XdcErsOut.0,&status);

DitsUfacePutMsgOut(XdcMsgOut,0,&status);

/*

* Handle dits initialise errors

*/

if (status != STATUS__OK)

return(DitsStop("XDITSCMD",&status));

/*

* Dits is Ready, set up the X windows/motif user interface

*/

CreateMainWindow(toplevel,ConfigDialogEnabled);

/*

* Realize top level widget - the user interface appears on the screen at

* this point

*/

XtRealizeWidget(toplevel);

/*

* Add Dits as another source of input with the routine InputFromDits

* to be called whenever a dits message is received.

*/

XtAppAddInput(context,source,(XtPointer)condition,XdcInputFromDits,0);

/*

* Enter the main loop. We should loop here forever - program exit is

* via the the Exit button which calls exit().

*/

XtAppMainLoop(context);

/*

* Should never occur

*/

return(DitsStop("XDITSCMD",&status));

}

We initialise Dits in the normal way, except that we specify the flag DITS_M_X_COMPATIBLE to
DitsInit(). This flag tellsDits to use an X-Windows compatible message notification technique.
We can then use DitsGetXInfo() to get the notification mechanism details. Later on, we use
XtAppAddInput() to tell the X-Windows toolkit to add this mechanism to its list of inputs.
Additionally, we specify to XtAppAddInput() a routine to be called when a Dits message is
received - in this case - XdcInputFromDits(). This routine simply loops processing all the

AAO/DRAMA_GUIDE_3 28

available Dits messages before returning

extern void XdcInputFromDits (XtPointer client_data, int * source,

XtInputId *id)

{

StatusType status = STATUS__OK;

long int exitflag = 0;

while (DitsMsgAvail(&status))

DitsMsgReceive(&exitflag,&status);

if ((status != STATUS__OK)||(exitflag))

exit(DitsStop("XDITSCMD",&status));

}

This combination replaces DitsMainLoop().

By default, messages output using Ers routines and MsgOut(), in the user interface, are
output using fprintf(). In an X-Windows system, we would prefer they goes somewhere else.
The routine DitsUfacePutErsOut() routine changes the output routine for Ers messages.
The second argument to DitsUfacePutErsOut() is copied to the outArg argument when the
output routine is called.

This is how XdcErsOut() is defined as-

extern void XdcErsOut (void * outArg, unsigned int count,

ErsMessageType messages[], StatusType * status)

{

char text[ERS_C_LEN+1];

register i;

if ((*status != STATUS__OK)||(count <= 0)) return;

/*

* Setup the first message and output it.

*/

strcpy(text,"##");

strcat(text,messages[0].message);

XdcMessageOutput(text,(messages[0].flags&ERS_M_HIGHLIGHT),

(messages[0].flags&ERS_M_BELL));

/*

* Output subsequent messages.

*/

for (i = 1 ; i < count ; ++i)

{

strcpy(text,"# ");

strcat(text,messages[i].message);

XdcMessageOutput(text,(messages[i].flags&ERS_M_HIGHLIGHT),

AAO/DRAMA_GUIDE_3 29

(messages[i].flags&ERS_M_BELL));

}

}

where XdcMessageOutput is a simple output routine which outputs into a message widget. This
routine does not correctly handle the ERS_M_ALARM flag. This should probably be handled
with an error popup as well as output to the scrolling area.

Likewise, the routine DitsUfacePutMsgOut() routine changes the output routine for Ms-
gOut() messages and XdcMsgOut() is defined as-

extern void XdcMsgOut (char * string, void * client_data,

StatusType *status)

{

if (*status != STATUS__OK) return;

XdcMessageOutput(string,0,0);

}

So now we have handled incomming Dits messages and the output of messages to the user
interface. The one thing left is actually sending commands. The source of commands would
normally be some widget in the X-windows user interface. This example reads a command line
and sends the message in this way-

/*

* Get space for the details and initialise it.

*/

details = (DuiDetailsType *)malloc(sizeof(DuiDetailsType));

DuiDetailsInit(details);

/*

* Get command and task name etc.

*/

.

.

.

/*

* Setup message buffer size details.

*/

details->MessageBytes = MessageSize;

details->ReplyBytes = ReplySize;

details->MaxMessages = MaxMessages;

details->MaxReplies = MaxReplies;

/*

* Get the message type and set the completion handler. The completion

* handler is necessary to release the memory allocated for details.

* The SuccessHandler handles image structures only.

AAO/DRAMA_GUIDE_3 30

*/

details->MsgType = MessageType;

details->CompleteHandler = CompletionHandler;

details->SuccessHandler = SuccessHandler;

DuiExecuteCmd(details,&status);

Probably the most obvious changes are the use of malloc() to get space for the details variable
and the setting of a completion handler, as well as a success handler. In addition, we don’t set
an error handler.

The completion handler, which will be called after the success handler, does nothing more then
free the details structure -

static void CompletionHandler(DuiDetailsType *details , StatusType *status)

{

free(details);

}

By doing this, we can have any number of command outstanding at one time.

Since we have added our own MsgOut() and Ers output handling routines and this type of
program does not exit automatically when a message completes - we can use the default Success
and Error handlers to output details of message completion for most messages. The execption
is for completion messages containing an Image Structure. This particular program can display
Images and therefore handles them itself -

static int SuccessHandler(DuiDetailsType *details , StatusType *status)

{

DitsArgType ArgId;

if (*status != STATUS__OK) return(0);

/*

* Have we got an argument.

*/

if (ArgId = DitsGetArgument())

{

char name[17];

SdsCodeType code;

long ndims;

unsigned long dims[7];

/*

* If we, get the details.

*/

SdsInfo(ArgId,name,&code,&ndims,dims,status);

if ((*status == STATUS__OK)&&(strcmp(name,"ImageStructure") == 0))

AAO/DRAMA_GUIDE_3 31

{

/*

* If we have an image structure, process it.

*/

SdsFind(ArgId,"DATA",&ImageId,status);

SdsInfo(ImageId,name,&code,&ndims,dims,status);

/*

* Valid image structure, display it.

*/

if ((code != SDS_STRUCT)&&(ndims = 2)&&(*status == STATUS__OK))

{

MsgOut(status,

"Action %s, Task %s, completed returning an Image Structure,",

details->Action,

details->TaskName);

/*

* Display the image.

*/

.

.

.

return(1);

}

else if (*status == STATUS__OK)

{

ErsOut(0,status,

"Action %s, Task %s, completed returning an INVALID Image Structure,",

details->Action,

details->TaskName);

return(1);

}

}

}

if (*status != STATUS__OK)

{

char errstring[100];

MessGetMsg(*status,0,100,errstring);

ErsOut(0,status,"Error handling completion of action %s - %s",

details->Action,errstring);

*status = STATUS__OK;

}

return(0);

}

AAO/DRAMA_GUIDE_3 32

In the cases where we returned 1, we have handled this message ourselves. Where 0 is returned,
we are requesting that the Dui routines handle the message completion.

If your user interface were more specific, you would probably have success handlers for each
action initiated. For example, if you have a button which sends a particular command to a
particular task, the success handler could look at the argument returned and display its value
on the appropriate part of the user interface, returning 1 to say it has been handled.

The combination of Dits and X-Windows is quite a complex field and is still being developed.
You are refered to [1] (Dui appendix) and [10].

3.5.4 Other Input Sources

In addition to combining Dits with X-Windows, it is possible to combine Dits with any other
inputs of the type used with the X-ToolKit.

For example, you may want to use a file, such as the standard input device, as a source of input.
If you are using the X-Windows toolkit, you can use XtAppAddInput() in the normal way.

When not using X-Windows, you should use the DitsAltIn routines. These work in a similar
way but do not involve X-Windows. They allow you to add up to 10 alternative sources of input.

The technique is to-

� Initialise Dits with X compatibilty. (flag to DitsInit()).

� Initialise a variable of type DitsAltInType using DitsAltInClear().

� Call DitsAltInAdd() for each alternative input source. You specify the variable above,
details of your input source and a procedure to be invoked when input occurs on your
source.

� Call DitsAltInLoop() instead of DitsMainLoop().

See [1] for more details.

4 Parameter systems

A parameter system provides configuration and debugging support. These parameters do NOT
correspond to command line arguments. They may be set and retrieved both externally and
internally to the task.

Typically a parameter is set externally and retrieved internally to change the task configuration
while those set internally and retrieved externally are used to indicate the state of task for
debugging purposes.

External setting and retrieving of parameters is done from another task with DitsSetParam()
and DitsGetParam(). Both these routines are very similar to the DitsObey() and Dits-
Kick() routines. Instead of an action name, both routines take the name of a parameter in the
target task.

AAO/DRAMA_GUIDE_3 33

In the case of DitsGetParam() the invoking action should reschedule to await a new entry
with a reason of DITS_REA_COMPLETE or DITS_MESREJECTED. In the case of the former, the value
of the parameter is in an SDS item id which can be accessed using DitsGetArgument(). It
should have a similar to that created by the ARG routines. The item name for the ArgGetx()
calls is the name of the parameter you requested.

In the case of DitsSetParam() you supply an argument which contains the new value for the
parameter.

These messages are not seen by the application routines but are handled entirely by interaction
between the Task’s Fixed Part and the parameter system.

The parameter system is an optional part of Dits tasks. Additionally you can use any parameter
system you wish, assuming it supports the appropriate interaction with the fixed part. The
techniques for setting and getting parameter values internally to the task is dependent on the
actual parameter system used.

4.1 The Simple Dits Parameter System

Dits provides a simple but useful parameter system, known as Sdp. Sdp uses SDS to store
parameters in a format compatible to that used by the ARG routines.

The routine SdpInit() is used to initialise the parameter system, returning the SDS id of the
parameter system. The routine SdpCreate() is used to create parameters while Dits is told
about the parameter system by calling DitsPutParSys(). The following is an extract from the
main() function of a Dits task -

static int one = 1;

static float two = 2.2;

static unsigned int three = 3;

static SdpParDefType params[] = {

{ "PARAM1", &one, SDS_INT },

{ "PARAM2", "hi there", ARG_STRING },

{ "PARAM3", &two, SDS_FLOAT },

{ "PARAM4", &three, SDS_UINT }};

int pardefsize = sizeof(params)/sizeof(SdpParDefType);

SdsIdType parsysid = 0;

SdpInit(&parsysid,&status);

SdpCreate(parsysid,pardefsize,params,&status);

DitsPutParSys(SdpGet,SdpSet,parsysid,&status);

The first item in each element of the parameter definition array (params) is the name of the
parameter. The second item is an address of the initial value, while the third item is the type
of the item. See [1] for more information.

AAO/DRAMA_GUIDE_3 34

You can define as many parameters as you want in the params array. Additionally, SdpCre-
ate() can be called multiple times if necessary. SdpGet() and SdpSet() are the routines which
will be called by the Dits fixed part when get and set messages are received.

Action routines can retrieve the value of parsysid using DitsGetParid() and then use ARG
routines to access parameters.

See [1] and [3] for more details.

5 Object Orientated techniques

Earlier in this document it was mentioned that a task is seen as a software object to which
messages are sent. By loading appropriate tasks you can build a complex system in an object
oriented way.

Although the tasks themselves do not have to be written in an object oriented way, there is
considerable gain to be made by doing so. This section examines how do do this.

The key to an object oriented approach in Dits is the DitsPutActionHandlers() routine.
In section 3.2.1 we described how you set up the action definition array used by DitsMain.
DitsMain supplies this array and its size in a call to DitsPutActionHandlers(). In a simple
task you only call this routine once, but it can be called multiple times. When you do this any
actions with the same name as actions already defined override the actions already defined. Any
actions not redefined are left as is.

This allows us to create modules which implement certain sets of actions. For example one
module may implement the actions which all tasks in a system should support - such as say
INITIALISE, POLL and EXIT. Another module may implement actions for a class of tasks
such as detectors, say EXPOSE and READOUT, while yet another module may implement
actions specific to a particular detector. Modules may wish to override commands in earlier
module, for example a particular detector system will normally want to implement its own
INITIALISE action.

The main() routine of the actual task will draw all these modules together in the correct order
by calling appropriate activation routines.

We shall look at an example which implements a simple spectrograph style task (Sst) which
could be run from the AAO Observer system. The AAO Observer system requires that such
a task support certain actions. The Generic instrument task package (Git, see [7]) provides
default support for these actions. The complete source code for this example is in appendix A.5

5.1 The Simple Spectrograph Task

The main module of Sst is very simple-

#ifdef DITS_MAIN_NEEDED

int main()

#else

AAO/DRAMA_GUIDE_3 35

int SstMain()

#endif

{

StatusType status = STATUS__OK; /* Status variable */

SdsIdType parsysid = 0; /* For parameter system id */

/*

* First, initialse the parameter system and dits.

*/

SdpInit(&parsysid,&status);

DitsInit("SST",5000,0,&status);

DitsPutParSys(SdpGet,SdpSet,parsysid,&status);

/*

* Activate the two module we use. This enables action handlers and creates

* parameters

*/

GitActivate(parsysid,&status);

SstActivate(parsysid,&status);

/*

* Loop receiving messages.

*/

DitsMainLoop(&status);

/*

* Shutdown dits and exit.

*/

return(DitsStop("SST",&status));

}

The first thing we must do is initialise Dits and the parameter system. The call to SdpInit()
initialises the parameter system, returning an identifier. This identifier is supplied to the call to
DitsPutParSys(), along with the Sdp routines that Dits will use to respond to set and get
messages.

We then activate each of the modules we are using. Each module should have a packActivate()
routine. If the package adds parameters the parameter system identifier is passed to it, as
occurs in both these cases. Since packages can override action and parameter names which
already exist, we should call the activation routines in an order which will ensure we get what
we want. Normally, for this type of task, GitActivate() is called first since it provides the
default handlers for various actions. There is no limit to the number of packages you could
bring together in this way.

When writing tasks in this fashion you should ensure your main() routine is in a separate file
from your activation and associated routines. This will ensure your task can be included in
another task at a later stage.

After the activation routines have been called we simply enter the main loop to receive messages.

AAO/DRAMA_GUIDE_3 36

5.2 Activation routines

The activation routine is often very simple, such as in GitActivate()-

extern void GitActivate (SdsIdType parsysid, StatusType *status)

{

DitsPutActionHandlers(GitMapSize,GitMap,status);

if (parsysid)

SdpCreate(parsysid, GitParamCnt,GitParams,status);

}

All it needs to do is to add the actions and parameters appropriate to this module. By making
the call to SdpCreate() conditional on a non-zero value for parsysid, we can use this module
in tasks which do not wish to provide parameter system support. In this module GdtMap is
defined as-

const DitsActionMapType GitMap[] = {

{GitInit, 0, 0, "INITIALISE" },

{GitNull, 0, 1, "CTRLC" },

{GitNull, 0, 2, "DUMP_LOG" },

{GitExit, 0, 0, "EXIT" },

{GitNull, 0, 3, "LOG_LEVEL" },

{GitPoll, GitKPoll, 0, "POLL" },

{GitNull, 0, 4, "POLL_PARAMETER" },

{GitReset, 0, 0, "RESET" },

{GitNull, 0, 5, "SIMULATE_LEVEL" },

{GitNull, 0, 6, "UPDATE_NBD" },

{DmonCommand, DmonCommand, 0, "UMONITOR"}

};

All the named actions are supported. Only the POLL and UMONITOR commands support
kick messages. Most of the actions result in the routine GitNull() being called, which as is
suggested, does nothing.

GitParams is defined as

static float Fone = 1.0;

static int Izero = 0;

static SdpParDefType GitParams[] = {

{ "LOG_LEVEL", "NONE", SDS_STRING },

{ "SIMULATE_LEVEL", "NONE", ARG_STRING, },

{ "TIME_BASE", &Fone, SDS_FLOAT },

{ "ENQ_DEV_TYPE", "DITS_IDT", SDS_STRING },

{ "ENQ_DEV_DESCR", "Dits Generic Instrument task", ARG_STRING },

{ "ENQ_VER_NUM", "P0.0", SDS_STRING },

{ "ENQ_VER_DATE", "20-Nov-1992", SDS_STRING },

{ "ENQ_DEV_NUMITEM", &Izero, SDS_INT }};

AAO/DRAMA_GUIDE_3 37

The Sst module is set up in a similar way.

The Git package provides several other routines which are usefull to task implementers. See [7]
for details.

6 Staging Library Routines

In a conventional package of library routines, each routine must be called entirely in the context
of one stage of an action. In DRAMA it is possible to construct packages which implement
operations in multiple action stages and then return control to the caller’s code.

One of the best examples is getting a path to a task. In order to provide maximum flexibilty
DitsGetPath() is complex to use, with a number of possible results which must be handled.
What would work better in many cases is a package which gets the path and causes the next stage
of your action to be invoked when the get path operation is complete or an error has occured.
The GitPathGetInit() and GitPathGetComp() routines implement such a scheme. The
first routine is called with details of the task to get a path. In addition you provide the address
of an action handler routine which is to be invoked when the operation is complete. The second
routine is called from the action handler to get the result of the operation. You will never see
the interving action staging.

The useage of these routine is documented in [7]. We shall examine here the techniques which
can be used to implement such routines.

The first thing to consider is where such a package stores information between action reschedules.
section 7.2 examines some of the reasons we cannot just use static storeage. The best approach
is probably to use DitsPutActData(). We must create a structure to contain the information
and malloc space for it. In GitPathGet the structure looks like-

typedef struct {

DitsPathType path; /* Path to task */

DitsActionRoutineType handler; /* User supplied handler */

void * client_data; /* User supplied data */

void * old_actdata; /* Value stored by DitsGetActData()*/

StatusType status; /* Status of operation */

} Git___PathData;

Here, old_actdata is a indicator to the next problem we must address. The user may already
be using DitsPutActData(). Before putting our own value with DitsPutActData(), we
must get the current value with DitsGetActData() and save it in old_actdata. We will need
to restore the original value as the last thing we do. The first path of GitPathGetInit() now
looks like-

extern void GitPathGetInit(char * name, int MessageBytes, int MaxMessages,

int ReplyBytes, int MaxReplies, int timeout,

DitsActionRoutineType handler, void * client_data,

StatusType *status)

AAO/DRAMA_GUIDE_3 38

{

void * old_actdata = DitsGetActData(); /* Get old action data */

DitsTransIdType transid;

Git___PathData *Info;

if (*status != STATUS__OK) return;

/*

* Get space for get path info.

*/

Info = (Git___PathData *)malloc(sizeof(Git___PathData));

/*

* Store details.

*/

Info->client_data = client_data;

Info->old_actdata = old_actdata;

Info->status = STATUS__OK;

Info->handler = handler;

/*

* Dits will save this infomration for us.

*/

DitsPutActData(Info,status);

}

Now we must initiate the getting of the path. The possibilties are

� Status is ok and we have the path immediately. Here we need to invoke the user’s handler
routine.

� Status is ok but we have to wait for the path. Here we need to setup the timeout, if
required and wait for something to happen.

� Status is NOT ok. Again we need to invoke the user’s handler routine.

The most consistent way to invoke the user’s handler routine is to change the action handler
using DitsPutHandler() and reschedule immediately. The overheard is not very large.

This is what the rest of DitsPathGetInit() looks like-

DitsGetPath(name,MessageBytes, MaxMessages, ReplyBytes, MaxReplies,

&Info->path, &transid, status);

if (*status == STATUS__OK)

{

/*

* If we already have the path, stage to the user’s handler

*/

if (transid == 0)

AAO/DRAMA_GUIDE_3 39

{

DitsPutHandler(handler,status);

DitsPutRequest(DITS_REQ_STAGE,status);

}

else

{

/*

* Wait for path. Invoke stage 2 handler when this happens. Setup

* timeout if it is required.

*/

if (timeout > 0)

{

DitsDeltaTimeType dt;

DitsDeltaTime(timeout,0,&dt);

DitsPutDelay(&dt,status);

}

DitsPutHandler(Git___PathGetStage2,status);

DitsPutRequest(DITS_REQ_MESSAGE,status);

}

}

/*

* Error, store the code and stage to the user’s handler.

*/

else

{

Info->status = *status;

*status = STATUS__OK;

DitsPutHandler(handler,status);

DitsPutRequest(DITS_REQ_STAGE,status);

}

If we have to wait for the path, then Git__PathGetStage2() is then next routine invoked. It
must store details of the possible errors and then invoke the user’s handler routine. This is what
it looks like.

extern void Git___PathGetStage2(StatusType *status)

{

DitsReasonType reason;

StatusType reasonstat;

/*

* Get the Information structure and reason for entry.

*/

Git___PathData *Info = DitsGetActData();

AAO/DRAMA_GUIDE_3 40

DitsGetReason(&reason,&reasonstat,status);

if (*status != STATUS__OK) return;

/*

* Set status based on reason for entry.

*/

if (reason == DITS_REA_RESCHED)

Info->status = GIT__PATH_TIMEOUT;

else if (reason == DITS_REA_PATHFOUND)

/* Nothing to do here */;

else if (reason == DITS_REA_PATHFAILED)

Info->status = reasonstat;

else

Info->status = GIT__PATH_INV_ENTRY;

/*

* Setup to call user’s handler.

*/

DitsPutHandler(Info->handler,status);

DitsPutRequest(DITS_REQ_STAGE,status);

}

The next thing that happens is that the user’s handler routine, specified to GitPathGetInit(),
is called. The first thing this routine should do is call GitPathGetComp(). At this stage,
the user must not assume the value of DitsGetActData() is what he put there (it is not)
and must not put any value using DitsPutActData(). GitPathGetComp() is simple. All
it needs to do is recover information for the user, restore DitsGetActData() and release the
memory allocated for it’s internal storage-

extern void GitPathGetComp(DitsPathType *path, void ** client_data,

StatusType *status)

{

Git___PathData *Info = DitsGetActData();

if (*status != STATUS__OK) return;

/*

* Restore the original action data.

*/

DitsPutActData(Info->old_actdata,status);

/*

* Fetch the required values.

*/

*path = Info->path;

if (client_data)

*client_data = Info->client_data;

AAO/DRAMA_GUIDE_3 41

*status = Info->status;

free((char *)(Info));

}

It should be possible to write very powerfull rescheduling packages using these tehniques.

7 Other facilities available

This section looks at some of the facilities available in DRAMA which have not been mentioned
in the examples.

7.1 Action context

Action routines are called with a context. This can be one of the following-

Context Meaning

DITS_CTX_OBEY Normal action entry caused by either an Obey message or a
reschedule for of an action.

DITS_CTX_KICK The action entry caused by reception of a Kick message.
DITS_CTX_UFACE User interface context. This only occurs after a call to DitsU-

faceCtxEnable() or in a user interface response routine.

The current context can be fetched by calling DitsGetContext(). Context use useful when
the same routine is used in handling Obey, Kick and/or User interface messages.

7.2 User and Action Data Routines

Under some operating systems, such as VxWorks, all tasks operate in the same memory address
space. As a result global and local static variables are common to all tasks which call a module
declaring a variable of a given name. To avoid problems with tasks clobbering each others
variables VxWorks provides the TaskVar library. This library allows a variable to be saved
and restored at each context switch. Although user written routines can use this library, its use
makes your code VxWorks dependent and makes the task context switch time longer.

The normal technique is for one task variable to be added per task and for that variable to
point to a dynamically allocated area of memory. All the variables which would otherwise be
static/global will be placed in the dynamically allocated area. This is the technique used by
Dits to protect its common data under VxWorks.

To avoid the user having to add another task variable, the DitsPutUserData() routine allows
a user variable to be placed in the Dits common block. The user can then fetch this data back
using DitsGetUserData(). Again the normal technique would be for the user to supply to
DitsPutUserData() the address of a dynamically allocated structure.

Additonially, you can store and retrieve data specific to each action using DitsPutActData()
and DitsGetActData(). Such data items are carried accross invocations of an action.

AAO/DRAMA_GUIDE_3 42

7.3 DitsInitiateMessage

We have seen the use of the routines DitsObey(), DitsSend() and DitsKick() to send mes-
sages to other tasks. These routines, together with others such as DitsGetParam() and Dits-
SetParam() are very similar. It would probably not surprise you to find out that these routines
are all wrap ups of calls to a common sending routine. This routine is named DitsInitiateMes-
sage().

DitsInitiateMessage() has a more complex interface then the message sending routines built
on it, but by using it directly, a bit more flexibility is available and more importantly, in situations
where the same message is sent a lot of times, greater efficiency.

See [1] for the full description of DitsInitiateMessage(). What we are concerned with here
is the message argument. Message is a structure of type DitsGsokMessageType. For the
routines such as DitsObey(), which call this routine, this structure is constructed on the fly
from the information in the call. In situations where the same message is sent a lot of times
you should construct this structure once and then use DitsInitiateMessage() to send it. This
could save considerable time in some situations.

7.4 Uface timers

To provide support for timeouts in user interface code DitsUfaceTimer() and DitsUface-
TimerCancel() are provided5. These routines may also be used by normal action code to
implement multiple timeouts if required. The author cannot at the moment forsee the circum-
stances where they might be required, but if they are, the user’s ResponseRoutine() should
use DitsSignal() to signal an action.

8 Include Files

In general, each package has an include file defining data type and function prototypes for that
package. You should include this file whenever you call routines from a package.

Dits is a bit more complex. Since a global Dits include file would be very large, Dits uses a
number of include files. All modules using dits should include DitsTypes.h and Dits_Err.h
to define the basic Dits types and error codes. The routine specifications in [1] lists for each
routine the appropriate include file which must be included to use that routine. Since Ditsmakes
considerable use of macros to increase speed it is very important to get the correct include file.

9 Compiling, Linking and Running

See the appropriate sections in [9] and [1] for details on how to compile and link and run Dits
tasks.

5User interface code operating in UFACE context cannot use action reschedules to implement timeouts.

AAO/DRAMA_GUIDE_3 43

10 Compatibilty with Starlink-ADAM

Much AAO software is currently written using the Starlink - ADAM software environment.
DRAMA provides several features which allow the mixing of Starlink and DRAMA in a
system.

� The Adam to Dits interface task. [1] describes this task in more details. It allows ADAM
tasks to communicate with Dits tasks. By using this task you can use ADAM user
interfaces (such as ICL) to control Dits tasks and integrate Dits tasks into existing ADAM
instrumentation systems.

� The DRAMA error reporting system (Ers) provides an alternative library which converts
calls to Ers routines into calls to the Starlink EMS package. As a result packages written
for DRAMA can be integrated directly into Starlink applications.

� When the appropriate way to do it becomes clear we will implement a technique which
allows the Starlink EMS packages to output its messages via Dits. This will allows
Starlink packages to be used in DRAMA tasks.

11 Software Organisation

This section to be rewritten when we have sufficient experience.

AAO/DRAMA_GUIDE_3 44

References

[1] Tony Farrell, AAO. 03-Aug-1993, Distributed Instrumentation Tasking System. Anglo-
Australian Observatory DRAMA Software Document 5.

[2] Keith Shortridge, AAO. 12-Oct-1992, Interprocess Message Passing System. Anglo-Austral-
ian Observatory DRAMA Software Document 8.

[3] Jeremy Bailey , AAO. 9-Sep-1992, Self-defining Data System. Anglo-Australian Observatory
DRAMA Software Document 7.

[4] Tony Farrell, AAO. 19-Feb-1993, DRAMA Error reporting System. Anglo-Australian Ob-
servatory DRAMA Software Document 4.

[5] Tony Farrell, AAO. 18-Feb-1993, A portable Message Code System. Anglo-Australian Ob-
servatory DRAMA Software Document 6.

[6] Tony Farrell, AAO. 12-Feb-1992, UDISPLAY and the UMON routines. Draft Anglo-
Australian Observatory Software Document.

[7] Tony Farrell, AAO. 14-Apr-1993, Generic Instrumentation Task Specification. Anglo-
Australian Observatory DRAMA Software Document 9.

[8] Tony Farrell, AAO. 23-Dec-1992, DRAMA Software Organisation Anglo-Australian Ob-
servatory DRAMA Software Document 2.

[9] Tony Farrell, AAO. 19-Jul-1993, Create Makefiles for DRAMA Programs Anglo-Australian
Observatory DRAMA Software Document 10.

[10] P.J.Asente & R. R.Swick. 1990, X Window System Tookkit Digital Press X and Motif
Series.

AAO/DRAMA_GUIDE_3 45

A Example code

This appendix gives the full source code listing for the various examples in the text.

A.1 Coffee.c

A.2 Tea.c

A.3 CTest.c

A.4 Ditscmd.c

A.5 Object Oriented programming examples

The Git Module

The Sst Module

The Sst_Main Module

