
DRAMA2 - DRAMA for the modern era.

Tony Farrell and Keith Shortridge

Australian Astronomical Observatory, P.O. Box 915 North Ryde, NSW 1670,
Australia

Abstract. The DRAMA Environment provides an API for distributed instrument
software development. It originated at the Anglo-Australian Observatory (now Aus-
tralian Astronomical Observatory) in the early 1990s, in response to the need for a
software environment for large distributed and heterogeneous systems, with some com-
ponents requiring real-time performance. It was first used for the AAOs 2dF fibre posi-
tioner project(Lewis et al. 2002) for the Anglo-Australian Telescope. DRAMA is used
for most AAO systems and is or has been used at various other observatories looking
for a similar solution. Whilst DRAMA has evolved and many features were added, the
overall design has not changed. It was still a largely C language based system, with
some C++ wrappers. It did not provide good support for threading or exceptions. Ideas
for proper thread support within DRAMA have been in development for some years, but
C++11 has provided many features that allow a high quality implementation. We have
taken the opportunity provided by C++11 to make significant changes to the DRAMA
API, producing a modern and more reliable interface to DRAMA, known as DRAMA2.

1. Introduction

The DRAMA API (Farrell et al. 1993) remains the AAO’s primary tool for constructing
complex instrumentation systems and has been/is being used by various other observa-
tories. It implements a tasking model usingh an approach based on the older Starlink
ADAM Environment(Allan 1992). Each named task responds to named messages of a
number of different types. In a DRAMA “System”, tasks can run across different hosts
in a heterogeneous environment. DRAMA was implemented from about 1992 and was
designed to be highly portable at a time before ANSI C was available on all machines
of interest.

Most work is a DRAMA task is done in response to “Obey” messages implement-
ing “Actions” (commands). Co-operative multi-tasking allows multiple actions to be
running at the same time but must deliberately return control to the DRAMA message
reading loop between events to allow other actions to run and for the action itself to
be “Kicked” - sent a message to change its behaviour in some way (typically, but not
always, to cancel the action cleanly).

Due to portability issues and problems determing the best approach, early C++
interfaces to DRAMA were of poor quality.

Whilst DRAMA tasks using threads of various types have been implemented over
the years, DRAMA itself has not supported using threads, with its own co-operative
multi-tasking technique sufficient in most cases and more portable then threads were.

1



2 Tony Farrell and Keith Shortridge

C++11(ISO 2011) was a major revamp to the C++ language: Threads are now
supported using a well thought out approach, by the compilers and standard libraries;
Many new features are provided by C++11 that assist library implementers to con-
struct quality interfaces. We have taken advantage of the upgrade of C++ to implement
DRAMA2, which will simplify writing and maintaining complex DRAMA tasks.

2. Basic DRAMA

A quick introduction to DRAMA is needed. A DRAMA task executes a message re-
ceive loop that dispatches control to event/message handlers when messages arrive. A
“Path” is a connection to another task, which is opened as required by application spe-
cific code and then used to send messages. There are various types of messages sent
between tasks, which may be running across various machines on the network.

Application specific code is provided to handle the “Obey” and “Kick” message
types. The “Obey” message type causes application specific code to be run. “Kick”
message communicate with a running Action of the “Name” in the message. The im-
plementation of an action of a given “Name” is provided by application specific C
language routines,invoked in response to messages by the DRAMA event loop.

Most messages can have an “Argument” attached, which provides a way of moving
data across machines. These arguments are implemented using Self Defining Structures
(SDS). These can be of any size and are designed to allow large amounts of data to be
sent efficiently between tasks.

3. The Approach to Implementing DRAMA2

Implementation as wrapper around the C API. An older DRAMA JAVA interface
proved that dramatic changes to the C level interfaces to DRAMA are not required
for thread and exception support. By implementing DRAMA2 as a set of wrappers
around DRAMA C APIs, compatibility with the large set of existing tasks can be easily
maintained and DRAMA2 could be implemented quickly.

Only one Thread reading DRAMA messages. There is one and only one thread that
actually blocks for and reads DRAMA messages from the underlying message queue.
Other threads can send DRAMA messages (and make other DRAMA API calls) but
cannot actually read the messages directly. No changes are required to the DRAMA
C language internals when using this approach. If another thread needs to wait for a
DRAMA message to occur, it must wait on a C++ condition, which is notified by the
DRAMA thread when the message arrives.

Locking access to DRAMA structures. Only one lock is used and it must be taken
by most methods that invoke the DRAMA C API. Use of the lock is normally in-
ternal to the DRAMA2 methods, but it can be used by application specific code to
access any DRAMA C API not yet available or for application specific locking. Use
of the DRAMA2 lock as the only lock in the application would avoid deadlock. The
DRAMA2 lock is safe for recursive use.

Status and error reports vs. C++ Exceptions. The DRAMA C API uses an inherited
status convention. Most functions have a “status” argument, which is a pointer to an



DRAMA2 3

integral type. Functions are expected to check the value pointed to is zero on entry. If
it is not, they return immediately. If an error occurs, status is set to a non-zero value.
The integer status value is passed as the result of DRAMA messages, allowing other
tasks to determine if an Action has failed and to interpret the status value. An Error
Reporting System (ERS) enables extra contextual information to be added when errors
occur.

In DRAMA2, an exception class is provided which is a sub-class of std::exception.
Any DRAMA2 method invoking a DRAMA C API must check the status returned and,
if bad raise an exception.

At any point where the DRAMA C API must invoke a DRAMA2 method, there
must be an interface function that has an inherited status argument. This function must
catch any exception thrown by DRAMA2 and convert it to a DRAMA status. Any extra
context available in the exception will be reported using ERS.

4. Task Structure

A Simple Task. The example below shows “Hello World” in DRAMA2. This program
implements a task named “TASK1”, which has just one Action - named “HELLO”.
Sending an Obey message with the name “HELLO” will result in the message “Hello
World” being output and the task then exiting. The action is implemented by sub-
classing the abstract class “MessageHandler” providing an implementation of “Mes-
sageReceived()”. Any number of actions can be added in a similar way and they don’t
normally cause the task to exit, and may be invoked multiple times in sequence.

#include "drama.hh"
using namespace drama;
class Action1 : public MessageHandler{ // Action Definition
Request MessageReceived() override {
MessageUser("Hello World");
return RequestCode::Exit; }

};
class ExTask : public Task { // Task Definition
Action1 Action1Obj; // Action object
ExTask(const std::string &taskName) :
Task(taskName) {
Add("HELLO",

MessageHandlerPtr(&Action1Obj,
nodel())); }

};
// Main program.
int main() { // Main program
CreateRunDramaTask<ExTask>("TASK1");
return 0; }

Threaded Actions.. In the above example, the “HELLO” action is running in the main
DRAMA2 thread. Whilst it can “Reschedule”, in the traditional DRAMA way to return
control to the message thread, the intent of DRAMA2 is to support running actions in
threads. For a thread, the user must declare a sub-class of the “TAction” class and
provide the method “ActionThread”, which is invoked within a thread when an Obey



4 Tony Farrell and Keith Shortridge

message received. When the thread completes, DRAMA2 is informed and the action is
marked as completed. All details of thread creation; joining the thread etc. is hidden by
DRAMA2 and examples thrown by the thread are reported via DRAMA2 as an action
failure. The example below shows a simple implementation of a thread action.

class Action1 : public thread::TAction{ // Action Definition
Action1(std::weak_ptr<Task> theTask):
TAction(theTask) {}

void ActionThread(const sds::Id &) override {
MessageUser("Hello World - from a thread"); }

};

Action threads can create their own sub-threads, which can interact with DRAMA.

Kicking Threaded Actions. The “WaitForKick” method and releated methods, allows
a threaded action to wait for a kick message. Alternatively, a “KickNotifier” object may
be created before say entering a CPU intensive loop. These objects create a thread that
waits for a kick message. Multliple child threads of one action may be waiting.

Sending Messages. A “Path” class is provided to enable sending DRAMA messages
to other tasks. Message sending is only possible from a threaded action. The thread,
but not the task, is blocked to await replies. As a threaded action can have child threads,
they may have any number of messages outstanding at any time. The example below
shows sending a message from DRAMA2.

Path server(...)
...
server.Obey(this, HELLO);

There are various message sending methods, including the ability to monitor for changes
to the values of parameters in other tasks. By default, the methods will block until the
subsidiary action completes, but there are features allowing overriding of the default
processing of the various possible replies to a message.

5. Other Features

Most other DRAMA features have been implemented in DRAMA2, and what remains
can be implemented as requested. Doxygen has been used to generate documentation
and a 130 page manual has been generated.

References

Allan, P. M. 1992, in Astronomical Data Analysis Software and Systems I, edited by D. M.
Worrall, C. Biemesderfer, & J. Barnes, vol. 2 of Astronomical Society of the Pacific
Conference Series, 126

Farrell, T. J., Bailey, J. A., & Shortridge, K. 1993, in Bulletin of the American Astronomical
Society, vol. 25 of Bulletin of the American Astronomical Society

ISO 2011, ISO/IEC 14882:2011 “Information technology – Programming languages – C++”
(International Standards Organisation)

Lewis, I. J., et al. 2002, MNRAS, 333, 279


