

AUSTRALIAN ASTRONOMICAL OBSERVATORY
DRAMA Software Report 14
Version 1.24

Tony Farrell
1/09/2017

DRAMA 2
Contents
1	 Introduction 7	
1.1	 DRAMA 2 – Hello World 7	
1.1.1	 Working through the example ... 8	
1.1.1.1	 Include file and DRAMA namespace. ... 8	
1.1.1.2	 Action Definition ... 8	
1.1.1.3	 Task Definition .. 9	
1.1.1.4	 Main function .. 9	
1.2	 Example Code Location 9	
1.3	 Building Examples 9	
1.4	 Running the example 10	
1.5	 Documentation 10	
1.6	 Compilers and Operating Systems 10	
2	 Adding Actions and Parameters to a task. 11	
2.1	 A Simple EXIT action, functions for action implementations 12	
2.2	 Task Parameters 13	
2.2.1	 drama::Parameter .. 13	
2.2.1.1	 drama::Task::TaskPtr() .. 15	
2.2.2	 drama::ParSys .. 15	
2.2.3	 ditscmd and parameters. ... 17	
3	 DRAMA Status and C++ Exceptions 19	
3.1	 Catching and dealing with exceptions in main() 20	
3.2	 Exceptions in action handlers 22	
3.3	 More detail on drama::Exception 24	
3.4	 Exceptions within destructors 24	
4	 SDS and Command Arguments 25	
4.1	 SDS 25	
4.1.1	 Copying SDS Items ... 25	
4.1.2	 Constructing drama::sds::Id items ... 25	
4.1.3	 SDS – Data operations .. 27	
4.1.3.1	 Creating an SDS Structure. .. 30	
4.1.3.2	 Inserting data into SDS. ... 30	
4.1.3.3	 Retrieving data from SDS .. 31	
4.1.3.4	 Other SDS Methods ... 31	
4.1.3.4.1	 Navigating Structures ... 31	
4.1.3.4.2	 Navigating structures using iterators ... 32	
4.1.3.4.3	 Viewing Structures. ... 32	
4.1.3.4.4	 Modifying Structures .. 32	
4.1.3.4.5	 Extra Data 33	
4.1.3.4.6	 Export/Import of structures .. 33	
4.1.3.4.7	 Export/Import of IDs .. 33	
4.1.3.4.8	 Copying 34	
4.1.3.4.9	 Direct access to the SDS Data. ... 34	
4.1.3.4.10	 SDS Compiler. .. 36	
4.2	 DRAMA Argument Structures 36	
4.3	 The gitarg namespace 37	
4.4	 Accessing action arguments 40	
4.5	 Returning SDS structures to the action’s source talk 41	
4.5.1	 Trigger Messages .. 41	
4.5.2	 Action Completion Message Arguments ... 42	

2 of 135 Section 1.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

4.6	 Complex parameters 42	
4.6.1	 Complex parameters with drama::Parameter .. 43	
4.6.2	 Complex parameters with drama::ParId .. 44	
5	 Action Rescheduling 45	
5.1	 Basic rescheduling. 45	
5.2	 Rescheduling after a delay. 46	
5.3	 Other reschedule reason codes. 47	
5.4	 Changing the Action Handler 47	
5.5	 Handling Kick Messages when Rescheduling. 48	
5.6	 Other ways of implementing handlers (e.g. as functions) 49	
5.7	 Spawnable Actions 51	
6	 Implementing Actions using Threads. 54	
6.1	 Major differences between pthreads and C++11 54	
6.2	 Implementing C++11 Threads in any Application 54	
6.2.1	 Futures and async. .. 55	
6.2.2	 Relationship to POSIX Threads. ... 55	
6.3	 Basic DRAMA2 Approach 55	
6.4	 Implementing DRAMA Actions using threads 56	
6.5	 Accessing Action Arguments 57	
6.6	 Kick Messages. 57	
6.7	 User initiated threads 58	
6.7.1	 POSIX Threads ... 60	
6.8	 Kicking threads that are blocked. 60	
6.9	 Trigger Messages, Output Arguments 61	
6.10	 Other ways of specifying handlers (e.g. as functions) 62	
6.11	 Locks - Working with older DRAMA interfaces or other shared data 63	
6.12	 Interactions with signals 63	
6.13	 Thread Programming Issues 64	
6.13.1	 Threaded Programs not exiting when expected. ... 64	
6.13.2	 Delayed Exception delivery .. 64	
6.13.2.1	 Delayed until an destructor is run .. 65	
7	 Sending Messages to tasks 66	
7.1	 DRAMA Task loading and Networking configuration 66	
7.2	 DRAMA 2 Message sending basics 66	
7.3	 Path constructor and related methods. 66	
7.4	 Loading tasks and Getting Paths 67	
7.4.1	 drama::Path methods that impact task loading. ... 69	
7.4.2	 drama::Path methods that impact Get Path operations. .. 69	
7.5	 Loading non-DRAMA programs. 70	
7.6	 Sending Obey Messages 70	
7.6.1	 Adding an argument to the Obey message .. 71	
7.6.2	 Recovering the completion message argument value from an Obey. 71	
7.7	 Sending Kick Messages 72	
7.8	 Changing how the methods respond to messages. 74	
7.8.1	 Responding to Trigger Messages .. 77	
7.8.2	 Responding to Kick Messages ... 78	
7.8.3	 Get Path messages .. 79	
7.9	 Message waits with timeouts 80	
7.10	 Orphaned Transactions 81	
7.10.1	 Default Behavior ... 81	
7.10.2	 Changing the default behavior .. 81	
7.10.3	 Actions taking over orphans ... 82	
7.10.4	 Creating an orphan on demand. ... 82	
7.11	 Parameter Set/Get Messages 82	
7.12	 Parameter Monitoring 83	
7.12.1	 Standard monitoring vs. forward monitoring ... 84	

AAO/DRAMA2 Section 1.1 3 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

7.12.2	 The Monitor Messages. ... 84	
7.12.3	 Monitor to Parameters .. 85	
7.12.4	 Monitor by Type .. 88	
7.12.5	 Forward Monitors. .. 92	
7.12.6	 Cancelling Monitors ... 92	
7.13	 Control Messages 92	
7.14	 Multiple simultaneous messages from one action. 93	
7.15	 Sequencing issues. 98	
8	 GIT Task Implementation 100	
8.1	 Overriding GIT Action Implementations. 101	
8.2	 Accessing Simulation. 102	
8.3	 GIT POLL Action 102	
8.4	 GIT Path. 104	
8.4.1	 Initialise Method ... 104	
8.4.2	 Exit Method ... 105	
8.4.3	 Poll Method ... 105	
8.4.4	 PollCancel Method ... 105	
8.4.5	 Report Method .. 105	
8.4.6	 Other Methods. ... 105	
8.4.7	 Example Usage ... 106	
8.4.8	 Sub classing git::Path ... 106	
9	 Bulk Data 108	
9.1	 Sending Bulk Data 108	
9.1.1	 Creating a Bulk Data shared memory segment .. 108	
9.1.2	 Sending a Bulk Data trigger message ... 109	
9.1.3	 Sending a Bulk Data Obey/Kick message ... 113	
9.2	 Receiving Bulk Data 114	
9.2.1	 Non-threaded actions .. 114	
9.2.2	 Threaded Actions .. 116	
10	 User Interfaces 117	
11	 Logging 121	
11.1	 Simplified Usage 121	
11.2	 Environment Variables 121	
11.3	 Log file locations/naming/day rollover. 122	
11.3.1	 Day Rollover ... 123	
11.4	 Actions/Parameters 123	
11.4.1	 LOG_LEVEL Action ... 123	
11.4.2	 Parameters .. 123	
11.4.3	 Related control messages .. 123	
11.5	 Logging levels 123	
11.6	 Opening the log file. 124	
11.7	 Logging Messages 125	
11.7.1	 SLog() 125	
11.7.1.1	 Limited formatting with SLog() via Manipulators .. 126	
11.7.2	 Log Stream Buffers ... 126	
11.8	 Interaction with DITS debugging. 127	
11.9	 Log file content. 127	
11.10	Type and thread safe printf style output to stdout/stderr. 128	
11.10.1.1	Limited formatting control with SafePrintf() via Manipulators .. 129	
12	 Internals 131	
12.1	 Action Threads 131	
12.1.1	 ActionThreadComplete() ... 131	
12.1.2	 ObeyReschedule() ... 131	
12.1.3	 ProcessDrama2Signal() .. 131	
12.2	 Sending Messages from threads 132	
12.2.1	 Type message – Obey() ... 132	
12.2.1.1	 Send() 132	

4 of 135 Section 1.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

12.2.1.1.1	 SetupWaitEvent() .. 132	
12.2.1.2	 WaitForTransaction() .. 132	
12.2.2	 ProcessSubsidiaryMessage ... 133	
12.3	 Dealing with shutdown. 133	
12.3.1	 Normal Action Thread Shutdown .. 133	
12.3.2	 Normal UFACE Thread Shutdown ... 134	
12.3.3	 Possible Flaws .. 134	
12.3.3.1	 UFACE Case. .. 134	
12.3.3.2	 Action Case .. 134	

AAO/DRAMA2 Section 1.1 5 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Table of Examples

Example	1–1.	Hello	World	in	DRAMA	2	 __	7	
Example	2–1.	Different	ways	of	adding	actions	__	 11	
Example	2–2.	Example	of	the	use	of	drama::Parameter	___	 13	
Example	2–3.	Use	of	drama::ParSys	__	 15	
Example	2–4.	Use	of	ditscmd	with	parameters	 __	 17	
Example	3–1.	Catching	drama:Exception	in	main()	___	 20	
Example	3–2.	Catch	all	exceptions.	___	 22	
Example	4–1.	SDS	Usage	example	__	 27	
Example	4–2.	Accessing	SDS	data	via	pointers	___	 35	
Example	4–3.	Constructing	Arg	style	SDS	structures	__	 36	
Example	4–4.	Reading	a	structure	with	gitarg	(for	source	-	see	example	4.3	source)	_________________________	 38	
Example	4–5.	Accessing	message	arguments	__	 41	
Example	4–6.	Sending	Trigger	messages	___	 41	
Example	4–7.	Setting	a	completion	message	argument	___	 42	
Example	4–8.	Complex	parameters	with	the	drama::Parameter	class	___	 43	
Example	4–9.	Complex	parameters	with	drama::ParId.	___	 44	
Example	5–1.	Basic	Rescheduling	___	 45	
Example	5–2.	Rescheduling	after	a	delay	__	 46	
Example	5–3.	Changing	Obey	handlers	___	 47	
Example	5–4.	Kick	Handlers	__	 48	
Example	5–5.	Specifying	functions/methods	as	handlers	___	 50	
Example	5–6	Spawnable	Action	Example	__	 52	
Example	6–1.	Implementing	an	action	with	a	thread	___	 56	
Example	6–2.	Threaded	action	argument	__	 57	
Example	6–3.	Kicking	a	threaded	action	___	 58	
Example	6–4.	Theaded	action	with	child	thread	___	 58	
Example	6–5.	Kicking	a	blocked	thread.	__	 61	
Example	6–6.	Implementing	a	thread	action	with	a	function.	__	 62	
Example	7–1.	Loading	tasks	and	getting	the	path	___	 68	
Example	7–2.	Sending	an	Obey	message	___	 70	
Example	7–3.	Sending	an	Obey	with	an	argument.	__	 71	
Example	7–4.	Accessing	Obey	message	completion	argument	__	 71	
Example	7–5.	Sending	kick	messages	___	 72	
Example	7–6.	Handling	trigger	messages	__	 77	
Example	7–7.	Handling	kick	messages	whilst	waiting	for	subsidiary	message	 ________________________________	 79	
Example	7–8.	Obey	with	timeout.	___	 80	
Example	7–9.	Getting	and	setting	parameters	___	 82	
Example	7–10.	Monitoring	to	parameters	___	 86	
Example	7–11.	Monitoring	by	type	___	 88	
Example	7–12.	Sending	multiple	messages	from	one	action	thread	__	 94	
Example	7–13.	Monitor	Kick	Handler	-	MonitorMessageHandler	 __	 95	
Example	7–14	Monitor	Kick	Handler	–	Action	Code.	 __	 96	
Example	7–15.	Monitor	Kick	Handler	–	processing	the	kick.	__	 97	
Example	7–16	Monitor	Kick	Handler	–sending	the		Monitor	Kick.	__	 97	
Example	8–1.	A	Basic	GIT	Task.	__	100	
Example	8–2.	Overriding	GIT	Action	Implementations	___	101	
Example	9–1.	Sending	a	bulk	data	trigger	message	__	110	
Example	9–2.	Obey	message	with	bulk	data.	__	113	
Example	9–3	Receiving	Bulk	Data	___	115	
Example	10–1.	Basic	User	Interface	Example	___	118	

6 of 135 Section 1.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

AAO/DRAMA2 Section 1.1 7 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

1 Introduction

The AAO DRAMA Software is a set of API’s and tools used to develop distributed software
capable of soft real-time performance. DRAMA has been around for quite some time –
having originally been developed under the C language, prior to ANSI C’s certification and a
long way before the standardization of C++. The C++ interfaces (SDS Library, ARG
Library, Dcpp and various GIT interfaces) have been added in a haphazard fashion over the
years and Dcpp in particular is very poorly designed.
Additionally – the POSIX Thread library is now common to architectures of interest and it is
attractive to use threads to implement actions.
The 2011 version of the C++ Standard (C++11) has now been released and is well supported
by compilers of interest. It provides many useful new features and standard support for
threads and other modern features.
This document introduces DRAMA 2, a modern interface to DRAMA using much of the
power of C++11. It allows DRAMA actions to be implemented in threads, reducing the
complexity of many tasks.

1.1 DRAMA 2 – Hello World
So what does a DRAMA 2 program (known as a “task”) look like? In the style of the
traditional “Hello World” program, the simplest DRAMA program will accept just one
DRAMA Action (Action = Command), output a message and cause the program to exit.
Example 1–1 gives such an example in DRAMA2.

Example 1–1. Hello World in DRAMA 2
1. #include "drama.hh"
2.
3. // Action definition.
4. class HelloAction : public drama::MessageHandler {
5. public:
6. HelloAction() {}
7. ~HelloAction() {}
8. private:
9. drama::Request MessageReceived() override {
10. MessageUser("Hello World - from DRAMA 2");
11. return drama::RequestCode::Exit;
12. }
13. };
14.
15. // Task Definition
16. class DramaExampleTask : public drama::Task {
17. private:
18. HelloAction HelloActionObj;
19. public:
20. DramaExampleTask(const std::string &taskName) :
21. drama::Task(taskName) {
22. Add("HELLO",
23. drama::MessageHandlerPtr(&HelloActionObj,
24. drama::nodel()));
25. }
26. };
27. // Main program.
28. int main()
29. {

8 of 135 Section 1.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

30. DramaExampleTask task("EXAMPLE1_1");
31. task.RunDrama();
32. return 0;
33. }

As per most example code in this document, the example has line numbers prefixed to each
line. Additionally, the task name indicates the example within the section, so EXAMPLE1_1
is section 1 (this section), example 1. EXAMPLE1_2 would be the second example in this
section (if there was one).

1.1.1 Working through the example
The example program creates a DRAMA task named “EXAMPLE1_1”, which has one and
one only action – “HELLO”. The “HELLO” action will output a message to the user and then
cause the task (program) to exit.

1.1.1.1 Include file and DRAMA namespace.
At line #1, “drama.hh” is included. This include file will pick up all of the DRAMA facilities
needed in a basic program.
All the DRAMA2 facilities are found within the “drama” namespace. As a matter of policy,
the author does not use “using namespace…” declarations in source files are not part of
implementing the namespace in question, so in these examples, each name from the “drama”
namespace will always be prefixed by “drama::”.

1.1.1.2 Action Definition
Line #4 is the definition of the class “HelloAction”, which will be used to implement the
“HELLO” action (command). This class implements the “drama::MessageHandler”
interface. Action implementations and DRAMA reschedule event handlers must implement
this interface and implement the “MessageReceived” method. That method will be
invoked when the Action is “Obeyed” (That is, when a message of type “Obey”, specifying
the “action” name is sent to the task.).
Line #9 is the beginning of the implementation of “drama::MessageHandler”. Note
the use of the “override” specification. This C++11 keyword indicates we are intending
to override a method in the sub-class and the compiler should complain if we are not. Please
use this keyword whenever overriding a method, as it ensures simple mistakes like errors in
the method name spelling or the argument list are picked up.
The “drama::MessageHandler” class provides “MessageUser()”, a method for
sending messages to the user interface, equivalent to DRAMA’s traditional MsgOut() call.
At line #10, this is used to send our “Hello World” message. As an alterative, there is also
the drama::MessageUserStreamBuf class, which can be used to contruct a
std::ostream sub-class that can be used to output such messages. This is how this might
be used:
drama::MessageUserStreamBuf<decltype(*this)> messStreamBuf(*this);
std::ostream messStream(&messStreamBuf);
messStream << "First line for message stream" << std::endl;

AAO/DRAMA2 Section 1.2 9 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

The method return at line #11 is used to specify some result of the action. In this case, we are
requesting that the task Exit when the method completes, by returning
“drama::RequestCode::Exit”. Various other values are possible, and will be
described later in the document.

1.1.1.3 Task Definition
In DRAMA 2, the “drama::Task” class is used to implement a DRAMA task. The
implementer must create one of these objects, add DRAMA Actions and Parameters to the
task and then invoke the RunDrama() method to process DRAMA messages.

The normal approach is to sub-class “drama::Task”, as in done at line #16 of Example 1–1,
with the class named DramaExampleTask. At line #18, the object “HelloActionObj”,
implementing the HELLO action, is defined.
At line #20, we see the task constructor. It passes the user specified DRAMA task name to
the “drama::Task” constructor.

In the body of the constructor, at line #22, the drama::Task Add() method is invoked to
create the “HELLO” action. The first argument is the action name; the second is a shared
pointer to the object that will implement the action – the HelloActionObj object. The
shared pointer is created using the drama::MessageHandlerPtr() constructor,
specifying the address of the object and drama::nodel() as the constructors second
argument, indicating the object should not be deleted when the shared pointer is destroyed.
We will examine the Add() method in more detail later.

1.1.1.4 Main function
In the main function, from line #27, we create the task and then run it. The drama::Task
RunDrama() method will return when an action indicates the task should exit.

It should be noted that the DRAMA Task is registered with DRAMA when drama::Task
constructor is invoked. The RunDrama() method is the message processing loop – you
invoke that method to actually start the task processing DRAMA messages..

1.2 Example Code Location
All example code from this document is found in the “Drama2Examples” Sub-system
(ACMM Module Drama2Examples). There is a sub-directory for each section of this
document and files are named after the example number. So
Drama2Examples/sec1/exam1_1.cpp contains the code from Example 1–1.

1.3 Building Examples
To build these examples, you need a DRAMA installation, with the new Drama2 sub-system
installed (ACMM Module Drama2). The “Drama2Examples” sub-system contains a
DRAMA “dmakefile” that can build all the examples using:

cd Drama2Examples
dmkmf –g
make

You can examine the dmakefile to see how this is done. The one thing unusual about this
dmakefile is that the example source files are in sub-directories of Drama2Examples, which
requires extra lines in the dmakefile to build the object files.

10 of 135 Section 1.4 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

1.4 Running the example
You can send the “HELLO” action (command) to this task using any general DRAMA user
interface, of which there are a few. “ditscmd” is the simplest way

>> ./exam1_1 &
>> ditscmd EXAMPLE1_1 HELLO
DITSCMD_10ff:EXAMPLE1_1:Hello World - from DRAMA 2
[3] + done ./exam1_1

1.5 Documentation
The detailed documentation for the classes, types and functions of DRAMA2 are generated
from the source code using the “DOXYGEN” tool. Please see <<web site>>. For DRAMA
itself, please see <<drama-web-site>>

1.6 Compilers and Operating Systems
Due to it requirement for C++11 features, DRAMA 2 requires a modern compiler. GCC
4.8.2 or later is needed (beware of a serious bug in GCC 4.9.0), and GCC is the standard
complier for Linux.
For Mac OS X – GCC 4.8.2 should work (TBC), but Apple X-Code now provides LCC rather
then GCC.

OS Version Compiler Version

Linux GCC 4.8.2 +

Mac OS X GCC TBC

Mac OS X Lion TBC

Mac OS X Mt. Lion XCode-LCC TBC

Mac OS X Mavericks XCode-LCC TBC

AAO/DRAMA2 Section 1.6 11 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

2 Adding Actions and Parameters to a task.

The drama::Task::Add() method is used to add actions to a task. The Action
implementation object is a sub-class of drama::MessageHandler, and must be specified
as a shared pointer (drama::MessageHandlerPtr()) to the object in question, to
ensure it is not deleted until DRAMA is finished with it.
drama::MessageHandlerPtr() is declared as
“std::shared_ptr<MessageHandler>”.

Example 2–1 is a rework of the “Hello World” program from Example 1–1, showing the
different ways an action can be added. The original code is at line #23, where we are
specifying the address of a of drama::MessageHandler declared as part of the task.
Here we must pass this address via a drama::MessageHandlerPtr() shared pointer,
but need make sure the object is not deleted when the shared pointer releases it, since it is part
of the task object. That is done by adding the optional “deleter” argument
“drama::nodel()” to the drama::MessageHandlerPtr() constructor. See
documentation for std::shared_ptr for more details on this “delete” argument.

Example 2–1. Different ways of adding actions
1. #include "drama.hh"
2.
3. // Action definition.
4. class HelloAction : public drama::MessageHandler {
5. public:
6. HelloAction() {}
7. ~HelloAction() {}
8. private:
9. drama::Request MessageReceived() override {
10. MessageUser("Hello World - from DRAMA 2");
11. return drama::RequestCode::End;
12. }
13. };
14.
15. // Task Definition
16. class DramaExampleTask : public drama::Task {
17. private:
18. HelloAction HelloActionObj;
19. public:
20. DramaExampleTask(const std::string &taskName) :
21. drama::Task(taskName) {
22.
23. Add("HELLO",
24. drama::MessageHandlerPtr(
25. &HelloActionObj,
26. drama::nodel()));
27. // Standard simple EXIT action.
28. Add("EXIT", &drama::SimpleExitAction);
29.);
30. }
31. };
32. // Main program.
33. int main()
34. {
35. DramaExampleTask task("EXAMPLE2_1");
36.
37. // Try adding actions from here, using a dynamically

12 of 135 Section 2.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

38. // allocated Obey message handlers. In all cases,
39. // the handler object will be deleted by DRAMA
40. // when the task shuts down.
41.
42. // Approach using the new operator.
43. task.Add("HELLO2",
44. new HelloAction());
45. // Approach using std::make_shared, may be more efficient.
46. task.Add("HELLO3",
47. std::make_shared<HelloAction>());
48. // Can also be done this way.
49. task.Add("HELLO4",
50. drama::MessageHandlerPtr(new HelloAction));
51.
52. task.RunDrama();
53. return 0;
54. }

From line #43, we see various examples of adding actions using dynamically allocated
objects, actions HELLO2, HELLO3 and HELLO4. Here we are using objects of the same
“HelloAction()” class, but you could of course use any sub-class of
drama::MessageHandler. Line #43 shows the most naïve example, specifying “new
HelloAction()”.to create the object. This does work, there is an overload of Add()
which accepts this and created a shared pointer to the object. But line #46 is the preferred
approach, as there is some scope for this to be implemented more efficiently by the compiler.
Line #49 is yet another version.

2.1 A Simple EXIT action, functions for action implementations
One additional change in Example 2–1 compared to Example 1–1 is the return value of
HelloAction::MessageReceived(). Rather then
“drama::RequestCode::Exit”, it now returns “drama::RequestCode::End”
(line #11). This request says that the action has completed, but that the task should continue
to run (accepting more messages). This was done to allow testing of the various different
forms of the HELLO action. But now we need a separate action to allow the task to shutdown
correctly. Traditionally, this is done with an action named EXIT.
Whilst a task may want to do various things when it receives an EXIT action, and can sub-
class drama::MessageHandler to implement what it requires, many simple tasks, such
as our examples, just need the task to shutdown immediately. As a result, a simple
implementation of an EXIT action class has been provided. This is the
“drama::SimpleExitAction” function, which is specified as the EXIT action’s
implementation at line #28.
This demostates it is also possible to specify a fuction to handle your action, rather then an
object. The argument to Add() in this case is of the type
drama::MessageReceiveFunction. This is declared as

std::function<Request (MessageHandler *)>

By use of std::function<> and/or std::bind(), there are many ways to generate
one of these. An object which is a sub-class of drama::MessageHandler is created, and
invokes this function to handle messages, and the address of the object is passed as the first
argument. This will be needed for any case where would might other call a method of the
drama::MessageHandler class.

AAO/DRAMA2 Section 2.2 13 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

2.2 Task Parameters
DRAMA Tasks can have a “Parameter System” and most significant tasks will. Parameters
are externally accessible named items that provide access to the task’s state and can be used
to set its configuration. Parameters have names and can have scalar values or complex values
(structures, arrays etc).
DRAMA Provides messages to Set and Get parameter values in other tasks, and to monitor
changes in their values. For example, a telescope control task will typically have parameters
for the telescope position, current time, current coordinate system etc. A user interface for the
telescope control task will monitor these parameters, which ensures it is notified when the
values change. It will then update displayed values. This monitoring of parameters approach
ensures efficient user interface implementation, and allows multiple user interfaces to the one
task to run at the same time.
The task implementing the parameters has the flexibility to implement parameters as they
prefer, but all known DRAMA tasks use the “Simple DITS Parameter System” – SDP, to
implement parameters. DRAMA2 presumes the use of SDP and provides a high level
interface to it.
It should be noted that SDP Parameters are effectively a global variable of the task. So in
cases where their value impacts the running of a task (a configuration parameter), they should
be used with care and these cases should be avoided. The preferred use of parameters is as
output only items (e.g. items intended for display in user interfaces).
DRAMA 2 implements two interfaces to the task’s own parameter system. The
“drama::Parameter” template class provides a simple interface which creates
parameters and objects that transparently read/write parameter values. Alternatively, objects
of the “drama::ParSys” class can be created and used to access parameters. This later
class is independent of how the parameter was created and hence can be used in cases that
“drama::Parameter” cannot.

2.2.1 drama::Parameter
Example 2–2 demonstrates the use of drama::Parameter. This task creates four scalar
parameters, PARAM1 to PARAM4, each of a different type. Note that we generally consider
a string parameter to be scalar, through its implementation is that of an array of char.

Example 2–2. Example of the use of drama::Parameter
1. #include "drama.hh"
2.
3. // Action definition.
4. class HelloAction : public drama::MessageHandler {
5. public:
6. HelloAction() {}
7. ~HelloAction() {}
8. private:
9. drama::Request MessageReceived() override {
10. MessageUser("Hello World - from DRAMA 2");
11. return drama::RequestCode::End;
12. }
13. };
14.
15. // Task Definition
16. class DramaExampleTask : public drama::Task {
17. private:

14 of 135 Section 2.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

18. HelloAction HelloActionObj;
19. public:
20. /*
21. * Create task parameters
22. */
23. drama::Parameter<INT32> param1;
24. drama::Parameter<std::string> param2;
25. drama::Parameter<float> param3;
26. drama::Parameter<UINT32> param4;
27. /*
28. * Constructor.
29. */
30. DramaExampleTask(const std::string &taskName) :
31. drama::Task(taskName),
32. param1(TaskPtr(), "PARAM1", 2),
33. param2(TaskPtr(), "PARAM2", "hi there c++"),
34. param3(TaskPtr(), "PARAM3", 33.3),
35. param4(TaskPtr(), "PARAM4", 4) {
36.
37. Add("HELLO",
38. drama::MessageHandlerPtr(
39. &HelloActionObj,
40. drama::nodel()));
41. // Standard simple EXIT action.
42. Add("EXIT", &drama::SimpleExitAction);
43.
44. double val = param3;
45. std::cout << "On startup, parameter 3 has value "
46. << val << std::endl;
47. param3 = 4.5;
48. std::cout << "Parameter 3 now has value "
49. << param3 << std::endl;
50. }
51. };
52. // Main program.
53. int main()
54. {
55. DramaExampleTask task("EXAMPLE2_2");
56. task.RunDrama();
57. return 0;
58. }

From line #23 to line #26, variables for each parameter are declared. The template argument
must be an SDS compatible scalar type1 or std::string. Note that use of INT32 for a 32 bit
integer, rather then say “int” or “long”, since the length of those types varies. If you want a 64
bit type, use INT64.
The constructors for these variables are invoked at lines 32 to 35. A pointer to the task is
requires, the name of the parameter and its initial value. Once the items are constructed, the
parameters are ready for use.
Line #44 shows how you can fetch the value of the parameter and line #47 shows how to
change it. That is, they can be used as if they are items of the scalar type they are
representing.

1	SDS	Scalar	types	->	signed char, unsigned char, unsigned short, short, INT32,
UINT32, INT64, UINT64, float, double.		

AAO/DRAMA2 Section 2.2 15 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

2.2.1.1 drama::Task::TaskPtr()
A slight division here. In Example 2–2, we see at lines 31 to 35 the use of the
drama::Task::TaskPtr() method. This method is used to retrieve a
std::weak_ptr to the Task object. Any DRAMA2 method which might store away
details on the drama::Task object will want a std::weak_ptr<drama::Task> object,
to ensure pointer use safety. Any attempt by these methods to run after the task has been
destroyed will result in an exception (rather then a segmentation volation core dump). It is
recommend that you pass pointers to task objects, when required, using
std::weak_ptr<drama::Task>.

Before using them, you must convert to a std::shared_ptr<drama::Task>. The
constructor will throw if the weak pointer is invalid. Many of DRAMA2 classes have a
GetTask() method which returns a std::shared_ptr<drama::Task> for the task
that were created with.
You can then use drama::TaskPtrAs() to downcast this to your own sub-class of
drama::Task. E.g.
class MyTaskClass :: public drama::task {
…
void MethodOfSomeClassWithGetTask
{
 auto myTask(GetTask()->TaskPtrAs<MyTaskClass>());
 myTask->MyMethod();’
}

2.2.2 drama::ParSys
There is an issue in Example 2–2. In order for say the “MessageReceived” method to
access the parameter value, the object must be available to it. There are various ways to
achieve this, particularly in this simple case. But for complex cases where the method
accessing the parameter is deep compared to the task, this could be a problem.
drama::ParSys provides an alterative. It makes the entire parameter system of a task
easily available. Example 2–3 shows a reimplementation of the MessageReceived()
method of Example 2–2 demonstrating the use of drama::ParSys.

Example 2–3. Use of drama::ParSys
1. drama::Request MessageReceived() override {
2. drama::ParSys parSys(GetTask());
3.
4. bool bVal=false;
5. char cVal=0;
6. short sVal=0;
7. unsigned short usVal=0;
8. INT32 iVal=0;
9. UINT32 uiVal=0;
10. INT64 i64Val=0;
11. UINT64 ui64Val=0;
12. double dVal=0;
13. float fVal=0;
14. std::string strVal;
15.
16. parSys.Get("PARAM1", &bVal);
17. parSys.Get("PARAM1", &cVal);
18. parSys.Get("PARAM1", &sVal);

16 of 135 Section 2.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

19. parSys.Get("PARAM1", &usVal);
20. parSys.Get("PARAM1", &iVal);
21. parSys.Get("PARAM1", &uiVal);
22. parSys.Get("PARAM1", &i64Val);
23. parSys.Get("PARAM1", &ui64Val);
24. parSys.Get("PARAM1", &fVal);
25. parSys.Get("PARAM1", &dVal);
26. parSys.Get("PARAM1", &strVal);
27.
28. std::cout << "::Get()s of PARAM1"
29. << ": Bool = " << bVal
30. << ", Char = " << (int)(cVal)
31. << ", Short = " << sVal
32. << ", U Short = " << usVal
33. << ", INT32 = " << iVal
34. << ", UINT32 = " << uiVal
35. << ", INT64 = " << i64Val
36. << ", UINT64 = " << ui64Val
37. << std::endl
38. << " Float = " << fVal
39. << ", Double = " << dVal
40. << ", String = " << strVal
41. << std::endl;
42.
43. std::cout << "Simple gets - PARAM3 (except string)"
44. << ": INT64 = "
45. << parSys.GetLong("PARAM3")
46. << ", UINT64 = "
47. << parSys.GetULong("PARAM3")
48. << ", Double = "
49. << parSys.GetDouble("PARAM3")
50. << ", String = \""
51. << parSys.GetString("PARAM2")
52. << "\"" << std::endl;
53.
54. parSys.Put("PARAM1", (bool)true);
55. parSys.Put("PARAM1", (char)2);
56. parSys.Put("PARAM1", (short)3);
57. parSys.Put("PARAM1", (unsigned short)4);
58. parSys.Put("PARAM1", (INT32)(-5));
59. parSys.Put("PARAM1", (UINT32)6);
60. parSys.Put("PARAM1", (INT64)7);
61. parSys.Put("PARAM1", (UINT64)(8));
62. parSys.Put("PARAM3", (float)(9.1));
63. parSys.Put("PARAM3", (double)(10.2));
64. parSys.Put("PARAM3", 11.2);
65. parSys.Put("PARAM2", "Result of char * put");
66. parSys.Put("PARAM2",
67. std::string("Result of std::string put"));
68.
69. std::cout << "Have completed all basic put operations"
70. << " parameters look like:"
71. << std::endl;
72.
73. MessageUser("All my parameter work is done");
74. return drama::RequestCode::End;
75. }

AAO/DRAMA2 Section 2.2 17 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

A drama::ParSys item is constructed at line #2 and is then used to fetch and set the value
of various parameters. The drama::ParSys::Get() method allows a parameter of a
given name to be fetched as a specified type, with conversions done as required (so you fetch
in the type you want, not needing to know the parameter’s actual type – as long as the
conversion is sensible). Similarly, the drama::ParSys::Put() method can be used to
set the value of a parameter from any source type which is compatible. There are also
methods like drama::ParSys::GetLong() which return a parameter’s value directly,
but only a few standard return types are supported (long, unsigned-long, double, string).
Hou can also use drama::ParSys to create parameters.
drama::ParSys::Create() allows the creation of a primitive parameter.
drama::ParSys::CreateItem() allows an SDS item to be inserted into the parameter
system whilst drama::ParSys::CreateSds() creates an item of a given SDS type
(typically a structure) and returns an drama::sds::Id item to allow you build a complex
parameter and access it efficiently.

2.2.3 ditscmd and parameters.
The “ditscmd” program can set and get parameter values. If the option “-g” is supplied,
then instead of specifying the action name as the second argument, you specify the name of a
parameter to fetch. Subsequent arguments are the names of other parameters to fetch.
If you specify the “-s” option to “ditscmd”, then you are setting the value of a single
parameter. The second argument is the parameter name and the third is the new value for that
parameter.
Finally, there are two special parameter names, “_NAMES_” and “_ALL_”. When you
specify “_NAMES_” as the parameter name in a “get” message, the return value provides the
names of all parameters in the target task. If you specify the name “_ALL_” then the entire
parameter system is returned in one message.

Example 2–4 shows the use of ditscmd with parameters.
Example 2–4. Use of ditscmd with parameters

>> ./exam2_3 &
>> ditscmd -g EXAMPLE2_3 PARAM1
DITSCMD_4b52:2
>> ditscmd -g EXAMPLE2_3 PARAM1 PARAM2
DITSCMD_4b53:2 hi there c++
>> ditscmd -g EXAMPLE2_3 PARAM1 PARAM2 PARAM3
DITSCMD_4b6e:2 hi there c++ 33.3
>> ditscmd -s EXAMPLE2_3 PARAM1 23
>> ditscmd -g EXAMPLE2_3 PARAM1
DITSCMD_4b72:23
>> ditscmd -g EXAMPLE2_3 _NAMES_
DITSCMD_4b78:Parameter names in task EXAMPLE2_3 (6 parameters):
DITSCMD_4b78: LOG_LEVEL
DITSCMD_4b78: GITLOG_FILENAME
DITSCMD_4b78: PARAM1
DITSCMD_4b78: PARAM2
DITSCMD_4b78: PARAM3
DITSCMD_4b78: PARAM4
>> ditscmd -g EXAMPLE2_3 _ALL_
DITSCMD_4b79:SdpStructure Struct
DITSCMD_4b79: LOG_LEVEL Char [5] "NONE"
DITSCMD_4b79: GITLOG_FILENAME Char [1] ""

18 of 135 Section 2.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

DITSCMD_4b79: PARAM1 Int 23
DITSCMD_4b79: PARAM2 Char [13] "hi there c++"
DITSCMD_4b79: PARAM3 Float 33.3
DITSCMD_4b79: PARAM4 UInt 4

AAO/DRAMA2 Section 2.2 19 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

3 DRAMA Status and C++ Exceptions

DRAMA has traditionally implemented an “inherited status” approach to management of
error conditions. Every routine had, normally as its last argument, a variable named
“status” of type “StatusType *”. On entry, the routine must check the value pointed to
and if it is non-zero (!= STATUS__OK), it should return immediately. Any routine
encountering an error should set status to a bad value and return. This leads to code like this:
void Routine(StatusType *status)
{
 if (*status != STATUS__OK) return;
 routine1(status);
 routine2(status)
 routine3(status);
 ….
}

This avoided typical C code that was a bunch of nested checks on possible returns from
functions. Such an approach can work well in C and Fortran code. StatusType is a 32 bit
integer and bad status values are defined using the DRAMA “messgen” tool such that each
value can be unique, #define macros for the status code values are available as string
translations of each status value.
The status values can be passed between DRAMA tasks, so a user interface can determine for
example, why an action in a subsidiary task failed and output an appropriate textual error
message.
DRAMA allows additional textual context to be added when errors occur using the “ERS”
library. This allows a set of textual information to be put together into an error report that can
be sent to the user interface. There is always a DRAMA Status associated with an Ers report,
but there is not always an Ers report associated with a bad DRAMA Status value. Textual
reports are important to allow things such as file names to be returned to the user .e.g “Failed
to open file /dev/device”.2
The DRAMA Status approach can go wrong if the programmer does not correctly check for
bad status on entry to a routine, or does not correctly translate a failure in a routine without
DRAMA Status (e.g. C RTL) to a DRAMA Status code. But other then these issues, it been
proven to work well.
In C++ it is more natural use exceptions to handle errors. Exceptions can implement most of
what is provided by the DRAMA Status and the ERS Library. Older DRAMA C++ interfaces
did not attempt to use exceptions as they were poorly supported by compilers at that point in
time, but DRAMA 2 can presume they are available and working well.
But C++ exceptions cannot be transmitted easily between tasks via DRAMA Messages. If an
action throws an exception that is not caught in the action method, DRAMA 2 needs to
convert it to a DRAMA Message that can be sent to the user interface or parent task for
processing or display.
The following approach is used.

2	The	DRAMA	Status	codes	are	based	on	Digital	VAX/VMS	Status	codes,	with	the	inherited	status	
convention	itself	inherited	from	the	Starlink	ADAM	environment.	The	ERS	library	is	based	on	the	similar	
ERR	library	in	the	Starlink	ADAM	environment.	

20 of 135 Section 3.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

1. A drama::Exception class has been created. All error conditions generated in
DRAMA code (DRAMA2 itself or user DRAMA code) should throw an object of this
class or a sub-class of drama::Exception.

2. Each time DRAMA 2 calls an older style method, with a DRAMA Status variable, it
checks the result after the call. If Status has gone bad, a “drama::Exception”
object is created and thrown.

3. At any point where DRAMA style code with an inherited status argument calls C++
DRAMA 2 code, it must catch any drama::Exception which is thrown and
convert it to a combination of a bad status value and ERS reports.

Most of the time, the implementer of a DRAMA2 task does not need to worry about the
above, but they do need to consider when to catch and handle exceptions.

3.1 Catching and dealing with exceptions in main()
In the various examples looked at so far, no attempt is made to handle any exceptions in the
main() routine. Exceptions could occur in the creation of the DRAMA task and the
running of the task. It is easy to demonstrate exceptions of each of these types. For example,
if you start one of the tasks and then use the DRAMA “taskclose” command to rudely shut it
down (taskclose causes the message loop to exit without any user code being invoked),
task.RunDrama() will throw an exception:
>> ./exam1_1 &
>> taskclose EXAMPLE1_1
Closedown request sent to task 'EXAMPLE1_1'.
terminate called after throwing an instance of 'drama::Exception'
 what(): DRAMA Task "EXAMPLE1_1" main loop exited with error
EXAMPLE1_1:exit status:%DITS-F-SIGABRT, DITS Exited via exit handler with
signal SIGABRT
 [3] + abort (core dumped) ./exam1_1

Alternatively, if you start a second copy of a one of these programs, then an exception is
thrown when the task is created, due to a task of the same name already being registered:
>> ./exam1_1&
[3] 25749
>> ./exam1_1&
[4] 25750
>> terminate called after throwing an instance of 'drama::Exception'
 what(): task.cpp:68:DRAMA Task Initialisation failure
##EXAMPLE1_1: Cannot register task 'EXAMPLE1_1'. Task name already in use.
EXAMPLE1_1:ImpRegister failed
EXAMPLE1_1:exit status:%DITS-F-SIGABRT, DITS Exited via exit handler with
signal SIGABRT

[4] + abort (core dumped) ./exam1_1

In both cases, the result is an abort and core dump, as with any uncaught exception.
Example 3–1 shows catching “drama::Exception” and reporting details from it.

Example 3–1. Catching drama:Exception in main()
1. int main()
2. {
3. try
4. {
5. DramaExampleTask task("EXAMPLE3_1");

AAO/DRAMA2 Section 3.1 21 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

6. task.RunDrama();
7. }
8. catch (drama::Exception &e)
9. {
10. // Note:need to have included <iomanip> for std::hex
11. std::cerr << "drama::Exception caught by main()"
12. << std::endl
13. << e.toString()
14. << std::endl
15. << "DRAMA Status = 0x"
16. << std::hex
17. << e.dramaStatus()
18. << ", "
19. << e.dramaStatusStr()
20. << std::endl;
21.
22. exit (e.statusAsSysExitCode());
23. }
24. return 0;
25. }

Line #11 to line #19 take advantage of features of drama::Exception to provide higher
quality output then the standard exception. Note that at line #17 we are accessing the
DRAMA status code associated with cause of the exception, which we can convert to a string
using drama::Exception::dramaStatusStr().

Line #22 converts the DRAMA Status code to a value appropriate for use with exit().

Given the above code, the two examples now return a more informative error and does not
core dump for the above two errors
>> ./exam3_1&
[3] 31216
>> taskclose EXAMPLE3_1
Closedown request sent to task 'EXAMPLE3_1'.
>> drama::Exception thrown and caught by main()
task.cpp:175:DRAMA Task "EXAMPLE3_1" RunDrama() exited due to error
DRAMA Status = 0xfd08114, %DITS-F-IMPSHUTDOWN, An Imp shutdown message was
received
[3] + exit 4 ./exam3_1

>> ./exam3_1&
[3] 31244
>> ./exam3_1
drama::Exception thrown and caught by main()
task.cpp:68:DRAMA Task Initialisation failure
DRAMA Status = 0xf35802a, %IMP-E-DUP_TASK_NAME, Task name already in use

drama::Exception is a sub-class of std::exception, which does allow many
standard try/catch blocks to catch it. But often you would want to implement a more complex
catch block set in main() to be sure you know what is going wrong. See Example 3–2 for
how this might be done. This example also shows how you can use a drama::Exception
object as a stream output source directly (line 12), this line outputs the same information as
lines 13 to 19 above.

22 of 135 Section 3.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Example 3–2. Catch all exceptions.
1. int main()
2. {
3. try
4. {
5. DramaExampleTask task("EXAMPLE3_2");
6. task.RunDrama();
7. }
8. catch (drama::Exception &e)
9. {
10. std::cerr << "drama::Exception caught by main()"
11. << std::endl
12. << e // Outputs all the exception details.
13. << std::endl;
14.
15. exit (e.statusAsSysExitCode());
16. }
17. catch (std::exception &e)
18. {
19. std::cerr << "std::exception caught by main()."
20. << std::endl
21. << e.what()
22. << std::endl;
23. exit(1);
24. }
25. catch (...)
26. {
27. std::cerr << "Non-standard exception in main()."
28. << std::endl;
29. throw;
30.
31. }
32. return 0;
33. }

The above is wrapped up by the function drama::CreateRunDramaTask(). This
function is a template function, with the template argument being a subclass of
drama::Task. An object of this class will be created with the arguments as passed to
CreateRunDramaTask()and it RunDrama() will method invoked. Any exceptions
thrown will be caught and an appropriate report made before the program exits. For example,
the above could be replaced by:
int main()
{
 drama::CreateRunDramaTask<DramaExampleTask>("EXAMPLE3_3");
 return 0;
}

This simple bit of code works in most cases and will be used for all the examples that follow.
Note that CreateRunDramaTask() is a Variadic template and as a result will work with
any sub-class of drama::task regardless of the arguments to the constructor.

3.2 Exceptions in action handlers
If an action handler throws an exception that propagates to the caller of
MessageReceived(), it is caught so as not to allow the DRAMA task to die with bad
status and an ERS report sent to the parent task.

AAO/DRAMA2 Section 3.2 23 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

If the exception was a drama::Exception or sub-class thereof, then the status of the
drama::Exception will become the completion status of the action and the results of
calling drama::Exception::toString() are put into the associated ERS report.

If the exception was a std::exception of sub-class, then the action completion status is
set to DRAMA2__CPP_STD_EXCEPTION, and the results of calling
std::exception::what() is put into the ERS report.

For any other exception, the action completion status is set to
DRAMA2__NON_STD_EXCEPTION.

This approach is used each time the DRAMA C style interface invoked DRAMA 2 C++ User
code.
Example 3.3 (not listed) has three actions, the “DRAMA” action throws a
drama::Exception, the “STD” action throws a std::exception, whilst the
“OTHER” action throws something not based on either of the them. Consider trying them. The
result is that in each case, the action completes but the task continues to run. An example of
running this task is shown below:
Note, the DRAMA 2 and DRAMA 2 Examples error codes are not automatically translated
by “ditscmd” and other standard tools. You can translate the error code with the
“messana” program after setting an environment variable to indicate it should use error
codes from those sub-systems, see below
>> export DRAMA_FACILITIES=./drama2examples_err_msgt.h

>> ./exam3_3&

>> ditscmd EXAMPLE3_3 DRAMA
##DITSCMD_376d:EXAMPLE3_3:DRAMA Exception thrown and reported via ERS
DITSCMD_376d:EXAMPLE3_3:Example 3.3 throws drama::Exception
DITSCMD_376d:EXAMPLE3_3:Exception DRAMA Status:0Xc2a8022, "%NONAME-E-
NOMSG, Message Number 0C2A8022"
DITSCMD_376d:EXAMPLE3_3:Thrown from line 14 in file "sec3/exam3_3.cpp"
DITSCMD_376d:exit status:%NONAME-E-NOMSG, Message Number 0C2A8022
>>
>> messana 0x0C2A8022
Message c2a8022(204111906) - Facility:1066(DRAMA2EXAMPLES), Number:4,
Severity:2
Code:%DRAMA2EXAMPLES-E-EXECEPTION_TEST, Exception test error code

>> ditscmd EXAMPLE3_3 STD

##DITSCMD_38e7:EXAMPLE3_3:std::exception
DITSCMD_38e7:exit status:%NONAME-E-NOMSG, Message Number 0C248022

>> messana 0x0C248022
Message c248022(203718690) - Facility:1060(DRAMA2), Number:4, Severity:2
Code:%DRAMA2-E-CPP_STD_EXCEPTION, C++ RTL Exception generated

>> ditscmd EXAMPLE3_3 OTHER
##DITSCMD_3f49:EXAMPLE3_3:Unexpected exception thrown by Obey - task state
unclear
DITSCMD_3f49:exit status:%NONAME-E-NOMSG, Message Number 0C24802A

>> messana 0x0C24802A
Message c24802a(203718698) - Facility:1060(DRAMA2), Number:5, Severity:2

24 of 135 Section 3.3 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Code:%DRAMA2-E-NON_STD_EXCEPTION, Exception which is neither stl nor DRAMA
thrown by handler

3.3 More detail on drama::Exception
If required, you can catch a drama::Exception and report it to the DRAMA ERS
system, flush the report and continue. The drama::Exception::ErsOut method will
do this, whist drama::Exception::ErsRep reports the details to ERS without flushing,
leaving you in control.
drama::Exception attempts to grab a stack trace at the point where it is invoked. The
abilities here are dependent on the operating system support. The data available can be
obtained with drama::Exception::getStackTrace.

There are various constructors available, but a couple of Macros are also available which
wrap up the construction and throw. DramaTHROW() takes two arguments, the DRAMA
Status code and a string. DramaTHROW_S() takes three or more arguments, with the second
argument being format string and later arguments being the arguments to that format. The
format string contain a “%” character at each point one of the arguments is to be written. Any
arbitrary types can be formatted as long as an overload of the << operator is available for that
type. This makes it easy to put some contextual information into the exception string, and is
type safe in the C++ way.
If you construct a drama::Exception object without using the macros, you must ensure
you specify the __FILE__ and __LINE__ compiler macros to the file and lineNum
arguments to ensure the source location of the exception is known. One case where you
might want to do this is where you have called a DRAMA C level routine and want to add the
DRAMA ERS information to the exception. This is done using the AddErs method, as per
the following code snippet:
drama::Exception except(true, __FILE__, __LINE__,
 status,
 "Failed to get path to task %s",
 _taskName.c_str());
// Add the ERS information.
except.AddErs();
throw except;

You could also construct a drama::Exception in this fashion and use the stream <<
operator to add contextual information to it before throwing it.

3.4 Exceptions within destructors
This is a general C++ issue, rather then anything releated to DRAMA2, but has been seen a
few times in DRAMA2 tasks and can cause confusion over what has happened. If an
exception is thrown by a destructor, then a program will be aborted – by a call to
std::terminate(). Any time a program is seen to have aborted via “terminate()”,
this should be considered as a cause.
If a call made from a destructor may throw, you should consider catching the exception if
want you program to continue running.

AAO/DRAMA2 Section 4.1 25 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

4 SDS and Command Arguments

SDS (the Self Defining data System) is DRAMA’s data representation system. SDS consists
of an interface (the SDS C Library Routines), an internal representation hidden by the
interface, and a documented external representation as a byte-stream. DRAMA uses SDS to
transfer data between tasks and allows transfer between machines. SDS transparently deals
with issues such as byte order and different floating-point formats in an efficient manner.
SDS data consists of named items; each item can refer to a scalar value, an array of scalar
values, structured of SDS items or arrays of structures.
Programmers work with SDS items via IDs, so the SDS C Library deals with SDS IDs.
Multiple SDS IDs may point to the same data item. A data item may be “internal” to SDS or
external (in a byte stream). External items may be stored in files or sent as messages, but
some SDS operations are not possible on external items.
When a DRAMA program like “ditscmd” sends a message to another task, the arguments
to the message are placed in an SDS structure. There is a standard format to these structures,
known as the “Arg” format, for the Arg set of C routines used to construct and read them. Arg
format SDS Structures are relatively simple but satisfy most uses of SDS within DRAMA
programs.

4.1 SDS
The DRAMA2 SDS Interface appears a complex beast, largely due to the number of methods
and a few annoying issues that must be dealt with, but most use is simple. The core of the
interface is the “drama::sds::Id” class. This class wraps up the representation of an
SDS ID.

4.1.1 Copying SDS Items
Issues arise when copying SDS Items. If you were to copy an SDS item, do you want to:

1. Copy the underlying SDS data item (possibly many Mega-Bytes in size).
2. Create a new SDS ID referring to the same SDS data item.

3. Create a new C++ object containing the same SDS ID.
And given a choice 2 or 3, what do you want to happen when the item goes out of scope –
does the source or destination object free the SDS ID and delete the object?
As a result, copy and assignment of drama::sds::Id objects in the normal C++ fashion
is prohibited (by deleting the copy constructor and assignment operators). Instead a Copy()
method is provided for 1 above. The ShallowCopy() method implements 3 above whilst 2
is not provided (as 3 covers all required usage).
The move constructor and move assignment operator are provided and are used extensively in
the implementation, and hid many of the issues you might otherwise see.

4.1.2 Constructing drama::sds::Id items
Only two standard C++ constructors are provided, the default constructor and the move
constructor. All the real work is done with the move constructor, the default constructor only
being used to create a target for the move constructor.

26 of 135 Section 4.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

To create your SDS item, you use one of a number of static or non-static factory constructors.
This approach makes it clearer what you are doing then trying to rely on constructor argument
lists to work it out.
The static methods are used when an existing drama::sds::Id item is not involved.
These are the available static factory constructors:

Method Description
drama::sds::Id::CreateFromSdsIdType Imports a C SdsIdType ID into

a sds::Id.
drama::sds::Id::CreateByAccess Accesses an external SDS item

(The SDS Item is in stored in a
buffer and will be accessed
from the buffer as an external
item.).

drama::sds::Id::CreateByImport Imports an external SDS item.
(The SDS Item is in stored in a
byte buffer and will be
imported from the buffer to
become an internal item.

drama::sds::Id::FromFile Reads an SDS item from a file.
drama::sds::Id::CreateTopLevel Creates a new top-level item.
drama::sds::Id::CreateTopLevelArray Creates a new top-level array

item.
drama::sds::Id::CreateArgStruct Creates a DRAMA Argument

style structure. This creates a
top-level item, which is a
structured SDS, item named
“ArgStructure”.

drama::sds::Id::CreateArgCmdStruct Creates a DRAMA Argument
style structure and fill it with
the supplied values.

For all the above, the destructor will release (free) the underlying SDS ID and delete the SDS
data structure (except for those created with Id::Access, where no delete is required, and
Id::FromFile where the buffer the item was read into is instead freed).

The non-static methods are used when another drama::sds::Id object is in some way the
source. These are the Non-Static Factory Constructor Methods:

Method Description
drama::sds::Id::CreateChildItem Creates a new child item in an existing

SDS item. The object will refer to the
child.

drama::sds::Id::CreateChildArray Creates a new child array item in an
existing SDS item. The object will refer
to the child.

drama::sds::Id::Cell Access a Cell of an array of structures.
drama::sds::Id::Copy Create a copy of the SDS object. The

Object will refer to the new top-level
internal object that is created.

drama::sds::Id::Find Find an item in a structure by name. The
object will refer to the item found.

AAO/DRAMA2 Section 4.1 27 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

drama::sds::Id::Index Find an item in a structure by index. The
object will refer to the item found

For all the above the underlying SDS ID is released (freed) when the object destructor is
invoked. Additionally, for drama::sds::Id::Copy, the SDS data structure is deleted
by the destructor.
Below we see some examples of the use of the factory constructors as the source for
assignment constructors:
drama::sds::Id id(drama::sds::Id::CreateTopLevel("Itm", SDS_STRUCT));

drama::sds::Id item1(id.CreateChildItem("ui64", SDS_UI64));
drama::sds::Id item2(id.CreateChildItem("i64", SDS_I64, extraItem));

std::vector<unsigned long> dims;
dims.push_back(10);
drama::sds::Id item3(id.CreateChildArray("double", SDS_DOUBLE,dims));

4.1.3 SDS – Data operations
Example 4–1 is an example of basic SDS operations that we will now work through.

Example 4–1. SDS Usage example
1. #include "drama.hh"
2. #include "sds_err_msgt.h"
3.
4. static void Construct(drama::sds::Id *topLevel);
5. static void ExamineIt(const drama::sds::Id &topLevel);
6.
7. /*
8. * Create a printer object used to output an SDS
9. * structure.
10. */
11. class MyPrinter : public drama::sds::PrintObjectCR {
12. virtual void Print(const std::string &) const override;
13. };
14. void MyPrinter::Print(const std::string &line) const {
15. std::cout << "PP:" << line << std::endl;
16. }
17.
18. int main(int , const char *[])
19. {
20. /*
21. * Allow us to translate SDS error codes
22. * (Needed as this is not a DRAMA program)
23. */
24. MessPutFacility(&MessFac_SDS);
25.
26. try
27. {
28. drama::sds::Id topLevel;
29. /*
30. * Construct a structure and check it.
31. */
32. Construct(&topLevel);
33. ExamineIt(topLevel);
34. /*
35. * Print via SDS internal printer.
36. */

28 of 135 Section 4.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

37. topLevel.List();
38. /*
39. * Print via own printer object.
40. */
41. topLevel.List(MyPrinter());
42. }
43. catch (drama::Exception &e)
44. {
45. e.Print();
46. return 1;
47. }
48. return 0;
49. }
50.
51. const INT32 MY_INT_VAL = 22;
52. const double MY_DBL_VAL = 33.33;
53. const short MY_ARRAY_SCALAR = 20;
54. static void Construct(drama::sds::Id *topLevel)
55. {
56. drama::sds::Id id(drama::sds::Id::CreateTopLevel(
57. "SdsCppTest", SDS_STRUCT));
58. /*
59. * Create a couple of scalar items.
60. */
61. drama::sds::Id item1(id.CreateChildItem(
62. "myInt", SDS_INT));
63. drama::sds::Id item2(id.CreateChildItem(
64. "myDouble", SDS_DOUBLE));
65.
66. /*
67. * Create a 10x20 array of short
68. */
69. std::vector<unsigned long> dims(2);
70. dims[0] = 10;
71. dims[1] = 20;
72. drama::sds::Id item3(id.CreateChildArray(
73. "myShortArr",
74. SDS_SHORT, dims));
75. /*
76. * Put the scalar data items into the structure
77. * using low level calls.
78. */
79. INT32 myIntVal = MY_INT_VAL;
80. double myDblVal = MY_DBL_VAL;
81. item1.Put(sizeof(myIntVal), &myIntVal);
82. item2.Put(sizeof(myDblVal), &myDblVal);
83. /*
84. * But we could use these simpler higher level
85. * calls. These do conversions as required.
86. */
87. item1.Put((INT32)(MY_INT_VAL));
88. item2.Put((double)(MY_DBL_VAL));
89. /*
90. * Or via name and refer to the top level item.
91. */
92. id.Put("item1", (INT32)(MY_INT_VAL));
93. /*
94. * Put data into the array item.
95. */
96. unsigned long i;
97. unsigned long count;

AAO/DRAMA2 Section 4.1 29 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

98. std::vector<unsigned long> arrayDims;
99.
100. drama::sds::ArrayWriteHelper<short> array;
101. item3.ArrayAccess(&array, &arrayDims);
102.
103. count = array.Size();
104. for (i = 0 ; i < count ; ++i)
105. {
106. array[i] = MY_ARRAY_SCALAR*i;
107. }
108. /*
109. * Return the result.
110. * Second arg=true says target outlives source
111. */
112. topLevel->ShallowCopy(&id, true);
113.
114. }
115. /*
116. * Examine our structure.
117. */
118. static void ExamineIt(const drama::sds::Id &topLevel)
119. {
120. /*
121. * We find item1 and item2 and then read its value
122. * using the low-level SDS Get() methods.
123. */
124. drama::sds::Id item1(topLevel.Find("myInt"));
125.
126. INT32 myIntVal;
127. item1.Get(sizeof(myIntVal), &myIntVal);
128. if (myIntVal != MY_INT_VAL)
129. {
130. DramaTHROW(SDS__TESTERR, "Test error");
131. }
132.
133. drama::sds::Id item2(topLevel.Find("myDouble"));
134. double myDblVal;
135. item2.Get(sizeof(myDblVal), &myDblVal);
136. if (myDblVal != MY_DBL_VAL)
137. {
138. DramaTHROW_S(SDS__TESTERR, "Test error %, %",
139. myDblVal, MY_DBL_VAL);
140. }
141.
142. /*
143. * We could also use these higher level calls
144. */
145. item1.Get(&myIntVal);
146. if (myIntVal != MY_INT_VAL)
147. {
148. DramaTHROW(SDS__TESTERR, "Test error");
149. }
150.
151. item2.Get(&myDblVal);
152. if (myDblVal != MY_DBL_VAL)
153. {
154. DramaTHROW_S(SDS__TESTERR, "Test error %, %",
155. myDblVal, MY_DBL_VAL);
156. }
157. /*
158. * Or via name and reference to the top level item.

30 of 135 Section 4.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

159. */
160. topLevel.Get("item1", &myIntVal);
161. if (myDblVal != MY_DBL_VAL)
162. {
163. DramaTHROW(SDS__TESTERR, "Test error");
164. }
165. /*
166. * Now check out array item.
167. */
168. drama::sds::Id item3(topLevel.Find("myShortArr"));
169.
170. unsigned long count;
171. std::vector<unsigned long> dims(SDS_C_MAXARRAYDIMS);
172. /*
173. * To access the array, we use ArrayReadHelper.
174. * "dims" will contain the dimensions of the data.
175. */
176. drama::sds::ArrayReadHelper<short> array;
177. item3.ArrayAccess(&array, &dims);
178.
179. count = array.Size();
180. for (int i = 0 ; i < (int)(count) ; ++i)
181. {
182. short expected = MY_ARRAY_SCALAR * i;
183. if (array[i] != expected)
184. {
185. DramaTHROW(SDS__TESTERR,
186. "Test error - myShortArr item");
187. }
188. }
189. }

4.1.3.1 Creating an SDS Structure.
In Example 4–1, creation of the structure is done in the routine Construct(). Its argument
is the address of an drama::sds::Id object which is constructed with the default
constructor at line #28. The Construct() routine will need to ensure the item constructed
is copied into this using drama::sds::Id ::ShallowCopy().

Construct() first uses the drama::sds::Id::CreateTopLevel() static factory
constructor to create the top-level item, at line #56. It then creates a couple of child items; an
integer and a double length floating point value. The first argument to each of the
CreateTopLevel() and CreateChildItem() constructors is used to specify the
name of the item, the second the SDS type of the item. The third item constructed is a two
dimensional array of short integers (SDS type SDS_SHORT), created using the
CreateChildArray() constructor(). The third argument is a vector with the dimensions.
The size of dims indicates the number of dimensions (to a maximum of 7).

4.1.3.2 Inserting data into SDS.
When an SDS structure is created, its data items are undefined. Only after you first put data
into a structure item is it defined. The low-level SDS Put() operation is shown at lines 81
and 82. Here you specify the size of the data item and the address of the data. Any type of
data and data of any size can be inserted with this version of drama::sds::Id::Put().
You can fill out an entire structure in one operation, which is practical if you have a mapping

AAO/DRAMA2 Section 4.1 31 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

between your SDS Structure and a C/C++ “struct”. See the SDS Documentation for details
on how to arrange this.
But in our example, we have simple scalar items for “item1” and “item2” and there are
simpler approaches. There is a simple Put() method, with only one argument, which can be
used when you have the SDS ID of a scalar (or string) item. This is shown at lines 87 and 88.
This method will convert from the type you specify to the type of the item as required, so in
this case the code, as it knows the type of the item, has specified that to ensure no conversion
is required.
Finally, if you have the SDS ID of the parent item, you can put the value by name, as at line
#92. Again, the value is converted if needed and possible to the type of the item.
Additionally, if the item does not yet exist, it is created – so this is a great way of building
structures of simple items.
The array item, item3, could have its data put from a C style array of data, using the basic
drama::sds::Id::Put() method, as per line #81. But often the use of a
drama::sds::ArrayWriteHelper object is a better approach for arrays of scalar
items. These objects provide methods to access the data directly within the SDS item,
avoiding otherwise unnecessary copies. They are also the better approach if you need to
access only some items in an SDS array. At line #100, an ArrayWriteHelper object is
created, a sub-class of ArrayAccessHelper used for writing to SDS arrays. At line #101
it is supplied to one of the drama::sds::Id::ArrayAccess() methods, which will
associate it with the SDS data. The “arrayDims” item will contain the dimensions of the
data, array.Size() returns the total number of items. The index operator is used at line
#106 to write to the array.
Finally, at line #112, the ShallowCopy() method is used to move the underlying SDS ID
from “id” to “topLevel”. The second argument to this, set to “true”, indicates that the
target object (topLevel) will outlive the source object (id). As a result, the target object
becomes responsible for cleaning up the underlying SDS ID and data structure when it goes
out of scope.

4.1.3.3 Retrieving data from SDS
The drama::sds::Id methods to extract data from SDS are very similar to those used to
insert the data, our example does this in its ExamineIt() method. At line #127 and again
at #135, you can see the use of the low level drama::sds::Id::Get() methods. Add
per the Put() equivalents, these can be used to get entire complex structures out of SDS.

At line #145 and line #151, you see the use the versions of Get() which fetch a simple
scalar value. And at line #160, you see a version that fetches by name from the top level SDS
ID. There are equivalents of these such as GetLong(), which return the value directly, but
which provide fewer options on the return type (i.e. there is no GetShort()).

From line #168 you can see how to access the array item.

4.1.3.4 Other SDS Methods
This section gives a very quick introductions to the other SDS methods which are available:

4.1.3.4.1 Navigating Structures

32 of 135 Section 4.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

The main methods for navigating SDS structures are drama::sds::Id::Find() and
drama::sds::Id::Index(). The former finds an item within a Structure by name, the
later by Index. The drama::sds::Id::Exists() method is an inquiry to determine if
a named item exists. There is also drama::sds::Id::Cell(), which you will need
when working with arrays of SDS Structures. It should be noticed that each element in an
array of SDS Structures could be of a different shape/structure.
Methods are also available to determine the details of an item -
drama::sds::Id::GetCode() will return the SDS Code (type) of an item,
GetDims() will return the dimensions of array items and GetName() will return the name
of the item. The ValidateCode() method will confirm the item is of a specified SDS type
(code) and will throw an exception if it is not. GetNumItems() will return the number of
items within a structure.

4.1.3.4.2 Navigating structures using iterators

An iterator is provided to allow navigation of structures using the C++11 range construct.
The following code segment shows how this may be done:
drama::sds::Id myStructId(…);
…
for (auto item:myStructItem)
{
 item.List();
}

Here you are trying to operate on each item within the structure represented by
“myStructId”. The range-based for-loop makes this simple, with “item” set to each
value in turn.
The iterator class being used to implement this is the class drama::sds::IdIterator, a
forward iterator.
At this point in time, this works with structures and single dimensional arrays of structures.
Multi-dimensional arrays of structures are not supported.

4.1.3.4.3 Viewing Structures.

When working with SDS structures, there if often cause to list the structure. Various
overloads of the drama::sds::Id::List() method are available for this purpose,
allowing you to output a listing to stdout, a C “FILE *”, a C++ std::ostream or via
your own printer object which must implement the drama::sds::PrintObjectPnt or
drama::sds::PrintObjectPnt interface, the Print() method of which is invoked
for each line of output.
In the same category is the drama::sds::Id::toString() method, which converts
the contents of an SDS structure to a simple string. Generally, this only works well for small
structures.

4.1.3.4.4 Modifying Structures

To add items to an existing structure, you can use
drama::sds::Id::CreateChildItem() or CreateChildArray(). If it is a
simple scalar item, you can also use overload of drama::sds::Id::Put() with a name

AAO/DRAMA2 Section 4.1 33 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

argument, as this will create the item if it does not exist. An array of structures can be filled
in with copies of an existing SDS structures using FillArray().

You can add a top-level item into an existing structure using drama::sds::Id::
Insert(), or the reverse - extract a sub-structure into its own top-level structure using
Extract(). You can delete an existing item using Delete().

You can rename an item using drama::sds::Id::Rename() and resize SDS Arrays
with Resize().

4.1.3.4.5 Extra Data

Each SDS item may have an item of “Extra Data” associated with it. This has rarely been
used in practice, but is sometimes of use. The raw “Extra Data” can be any byte array, but in
practice, it is always treated as a string and this interface presumes that.
Each of the constructors that create an SDS item provides an optional “extra” argument. If not
an empty string, it will be associated with the item. There are also methods to retrieve this
item - drama::sds::Id::GetExtra() and set it - PutExtra(). Extra data is listed
in List() operations, but otherwise must be fetched by the application to be used.

4.1.3.4.6 Export/Import of structures

SDS Structures are created in an efficient internal memory structure. But they can be
“exported” to a byte stream and then re-imported from a byte stream. This allows them to be
stored in files and sent in messages. The “external” structure layout if defined in the SDS
documentation and in theory alterative readers can be created.
The drama::sds::Id::Export() method will export into a buffer. But be careful that
if SDS data is not yet “defined”, then it exported that way. Undefined data gives an error if
you try to read the data. To be sure that any undefined data is defined, use
ExportDefined(). To get the size of the buffer needed, invoke Size() or
SizeDefined(). The Export methods do not attempt to resize the buffers (since that limits
the types that can be specified as the buffer).
External data can be accessed from within the external buffer using
drama::sds::Id::CreateByAccess() or imported, creating an internal SDS item,
using CreateByImport(). You should import the structure if you wish to change the
layout of the structure. You can change the values of data in an external SDS item, but you
can’t change the layout.
The drama::sds::Id::Write() method is a utility that exports an SDS item and
writes it straight to a specified file. The ReadFromFile() static factor constructor will
likewise read from a file and access the item.

4.1.3.4.7 Export/Import of IDs

The drama::sds::Id class is a wrapper around the C level SDS ID, itself a reference to
the actual SDS data structures. A method exists which allow C style SDS ID’s to be
imported, the static factory constructor
drama::sds::Id:CreateFromSdsIdType(). The optical arguments indicate what
the destructor should do with the underlying SDS ID, if you want the SDS ID free-ed, deleted
or, if it was read from a file, the buffer free-ed with SdsReadFree(). The defaults
presume you want none of these done, which is the best choice in most cases where say a C

34 of 135 Section 4.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

SDS ID has been passed to your method, is used within your method and is tidied up by the
caller.
It is also possible to export from drama::sds::Id to C style SDS ID’s. There is an
operator that will convert to SdsIdType, which is useful in calling C interfaces that access
your SDS Item but won’t want to delete the item or free the ID. More control is available
with the COut() method, which allows you to find out what was supposed to happen when
this object is destroyed and to tell the object not to do those operations (E.g. if for example
the C code is going to call SdsDelete() and SdsFreeId() on the ID returned by
COut()).

4.1.3.4.8 Copying

The drama::sds::Id::Copy() factory constructor will return a deep copy of the
source object. By a deep copy, we mean that the entire SDS structure including all of its data
is copied into a new internal item that can be accessed and changed dependently of the
original item. In addition to use this if you just want to copy an item, you will need to use it if
your source object is an external item (method IsExternal() can tell you that) and you
wish to modify the structure of the item.
The alternative copy is the “Shallow Copy”. A Shallow Copy allows a drama::sds::Id
item to take control of an SDS ID from somewhere else. The
drama::sds::Id::CreateFromSdsIdType()method mentioned in the previous
section, is, in effect, a shallow copy factory constructor where the source is a C style SDS ID.
There are also two drama::sds::Id:ShallowCopy() methods. Both of these give a
way for an drama::sds::Id object to take control of another SDS ID, as per line #112 of
Example 4–1, where we need to pass an item we have constructed back to caller. For one of
these, the source is another drama::sds::Id item. In this case, we must indicate if the
target item will outlive the source item. If it will, then the target must take over full control of
the underlying SDS ID and delete the structure and free the ID when it goes out of scope,
rather then when the source goes out of scope. For the other ShallowCopy() method, the
source s a C style SDS ID and the other arguments must indicate if the ID is to be freed,
deleted and/or read-freed when it goes out of scope. (Note, you set the delete flag items
which have been created, you set the readfree flag for items which have been read via
SdsRead() or similar.

4.1.3.4.9 Direct access to the SDS Data.

The Get/Put methods are one way to work with SDS data, but they all involve copying the
data. This may introduce performance problems if you are accessing the data a lot or say have
a large array that you want to access only occasional items of. SDS Provides a technique to
allow direct access to the data as stored by SDS. The drama::sds::Id::Pointer()
method provides the lower level interface to this. Note that having used this, if you update
that data you should invoke drama::sds::Id::Flush() to ensure any update is written
out3.
But drama::sds::Id::Pointer() is very much a “C-style” approach to the problem.
A better interface is provided by the drama::sds::DataPointer class. This class is a

3	drama::sds::Id::Flush()	is	a	null	operation	on	all	currently	supported	implementations	of	SDS,	
but	is	retained	for	compatibility	reasons.	

AAO/DRAMA2 Section 4.1 35 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

subclasses of std::unique_ptr<> and provides a safer way of accessing the data. There
is also an array specialization of this class. The template types here can be any C++ POD4
(Plane Old Data) types, such as SDS Scalar types or C structures containing SDS Scalar
types.
Example 4–2 is a rewritten versions of ExamineIt() from Example 4–1, using
drama::sds::DataPointer. This example only reads the data items, it is possible
write them as well if the pointers are not defined as “const”.

Example 4–2. Accessing SDS data via pointers
1. static void ExamineIt(const drama::sds::Id &topLevel)
2. {
3. /*
4. * Find the integer item and then access its value
5. * via pointer.
6. */
7. drama::sds::Id item1(topLevel.Find("myInt"));
8. const drama::sds::DataPointer<INT32> myIntValPnt(item1);
9. if (*myIntValPnt != MY_INT_VAL)
10. {
11. DramaTHROW(SDS__TESTERR, "Test error");
12. }
13. /*
14. * Find the double item and then access its value
15. * via pointer.
16. */
17. drama::sds::Id item2(topLevel.Find("myDouble"));
18. const drama::sds::DataPointer<double> myDblValPnt(item2);
19. if (*myDblValPnt != MY_DBL_VAL)
20. {
21. DramaTHROW_S(SDS__TESTERR, "Test error %, %",
22. *myDblValPnt, MY_DBL_VAL);
23. }
24. /*
25. * Find the array of short and check it out.
26. */
27. drama::sds::Id item3(topLevel.Find("myShortArr"));
28. const drama::sds::DataPointer<short[]> array(item3);
29.
30. int i = 0;
31. for (auto it = array.cbegin();
32. it != array.cend() ;
33. ++it, ++i)
34. {
35. short expected = MY_ARRAY_SCALAR * i;
36. if (array[i] != expected)
37. {
38. DramaTHROW(SDS__TESTERR,
39. "Test error - myShortArr item");
40. }
41. }
42. /*
43. * Note - nothing stops you updating the values

4		C++11	defines	PODs	as	trivially	copyable	types,	trivial	types,	and	standard-layout	types.	POD	is	defined	
recursively	If	all	your	members	and	bases	are	PODs,	you're	a	POD.		A	POD	has:	No	virtual	functions,	No	
virtual	bases,	No	references,	No	multiple	access	specifiers.	The	most	important	aspect	of	C++11	PODs	is	
that	adding	or	subtracting	constructors	do	not	affect	layout	or	performance.	Static	assertions	are	used	by	
these	DRAMA2	methods	to	ensure	template	type		arguments	are	POD	types	

36 of 135 Section 4.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

44. * using these approaches, with the non-const
45. * pointers
46. */
47. }

4.1.3.4.10 SDS Compiler.

Whilst not a feature of drama::sds, it should be noted that SDS provides a way of quickly
moving data to/from C struct’s (C++ POD types). The SDS Compiler will take a C include
file with a struct definition and creates a file containing a C function. When this C function is
invoked, it generates an SDS structure equivalent to the C struct. You can then use the
Get/Put methods to move data between the C and SDS equivalents in one operation. Please
see the SDS Manual for more information.

4.2 DRAMA Argument Structures
Messages sent between DRAMA tasks can contain an SDS structure argument of any
complexity, with the size limited only by the size of the message buffers set up when
communications between the two tasks are initiated.
But, to allow programs to be sent messages from utility programs such as “ditscmd”, some
standards are required. To accept arguments from utility User Interfaces, a DRAMA Action
should accept an SDS Structure containing items named “Argument1” through to
“Argument<n>”. Typically, these items are string or scalar values. These are to be converted
as required to the type needed by the client program. “ditscmd” will normally send a
structure of all string arguments, but clients that need integer or floating point values should
convert them as required. The top-level SDS structure is normally named “ArgStructure”,
but in most cases this name is ignored (one gitarg namespace case does use the name, see
below).
The drama::sds::Id class provides several static factory constructors to help in creating
such structures. drama::sds::Id::CreateArgStruct() creates a top-level SDS
item ready for inserting values. Normally you would use the Put() with name methods to
insert each value, but the item is a standard SDS Structure, so use of other SDS methods is
possible. There is also the drama::sds::Id::CreateArgStructCmd()constructor.
It creates an argument structure and fills out the items “Argument1” through to
“Argument<n>” using values in container passed to the method. If you already have such a
structure and want to add items to it, you could also use the AddToArgStructCmd()
method, which is similar to the CreateArgStructCmd() constructor.

Example 4–3 shows an example of using these methods. The structure is created at line #9,
containing three string items from a vector. Line #14 shows some short values being added,
whist line #20 shows some stings representing Boolean values being added. There are also
some examples of using the Put() with name methods, at line #25 and line #28.

Example 4–3. Constructing Arg style SDS structures
1. static void Construct(drama::sds::Id *topLevel)
2. {
3. /* A Vector of string items */
4. std::vector<std::string> strArray{
5. "StrItem1", "StrItem2", "StrItem3" };
6.
7. /* Create ArgStructure SDS item, one item for
8. each in strArray */

AAO/DRAMA2 Section 4.3 37 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

9. drama::sds::Id id(
10. drama::sds::Id::CreateArgCmdStruct(strArray));
11.
12. /* Add an array of short values to the structure */
13. short shortArray[]= { 4, 5, 6, 7 };
14. id.AddToArgCmdStruct(shortArray, strArray.size()+1);
15.
16. /* Add an array of strings to be treated
17. as bools when read */
18. std::vector<std::string> boolArray{
19. "yes", "NO", "TRUE", "FALSE" };
20. id.AddToArgCmdStruct(
21. boolArray,
22. strArray.size()+drama::ArraySize(shortArray)+1);
23.
24. /* Add a string as a named item. */
25. id.Put("BY_NUM", "String by Num");
26.
27. /* Add a named item, referring to a file */
28. id.Put("FILE", "./raw_struct.sds");
29.
30. /*
31. * Return the result.
32. * Second arg=true says target outlives source
33. */
34. topLevel->ShallowCopy(&id, true);
35.
36.
37. }

The receiver of such structures could use the drama::sds::Id::Get() by name series methods to
retrieve the data, but classes in the gitarg namespace provides more options, as shown in
the next section.

4.3 The gitarg namespace
Programs accepting arguments from the user or other programs typically need to validate
those values in some way. They may also want to apply defaults if a value is not given.
Strings may converted to enumerated types, including Boolean. The gitarg namespace
provides classes that can be used by a DRAMA program to interpret SDS Argument
structures using such rules.
The table below summarizes the types provided.

Class Description Comments
drama::gitarg::Bool Implements a Boolean

type that can be initialized
from a value in an SDS
structure.

User can supply various
string representations of
TRUE and FALSE, e.g.
YES and NO, ON and
OFF etc, as required

drama::gitarg::Enum Implements an Enumerate
type that can be initialized
from a value in an SDS
structure.

A template class, user
provides two types to the
template, one the Enum
value they want to use, the
other a helper class they
must implement

drama::gitarg::Int Implements an Integer A range validated integer

38 of 135 Section 4.3 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Class Description Comments
type that can be initialized
from a value in an SDS
structure.

represented using “long
int”.

drama::gitarg::Real Implements a Real number
type that can be initialized
from a value in an SDS
structure.

A range validate Real
number represented using
“double”.

drama::gitarg::String Implements an overload of
std::string which
can be initialized from a
value in an SDS structure.

Can be used as a
std::string type, but
allows initialization from a
value in an SDS structure.

drama::gitarg::Id Implements an overload of
drama::sds::Id
which can be initialized
from a value in an SDS
structure.

Allows complex structures
or references to SDS files
to be passed as arguments.

Example 4–4 below (the source is part of the file containing Example 4–3) shows various
examples of using these classes. Each class implements a Constructor and a Get() method,
both of which take as an argument an SDS structure. An important point to note is that
arguments are fetched by Name if possible and then by position. The idea is that you can
support well defined argument names, which you might get if writing the task that sends the
message as part of a system of tasks, but you can also support arguments sent by general
DRAMA commands such as “ditscmd”, which don’t (by default) allow you to specify the
names for each argument. If your argument is not found by the name specified, these methods
look in the specified position. Be warned that this can go astray if you have a mixture (which
our example does), but in real world examples, it achieves the desired result.
In the example, we are extracting information from the structure constructed in Example 4–3.
The drama::gitarg::Enum type requires that you have set up the Lookup argument and
the Enum argument to the template in an appropriate way, as shown from lines 1 to 28. Once
that is done, the constructor at line #43 will read the argument and construct the Enum from
the argument named “Argument1” or at position number 1 in the SDS structure, if one named
“Argument1” does not exist. If the supplied value does not match one of the expected values,
an exception is thrown.
Further in the example, construction of an integer from an argument that must be in the range
-10 to 100 (line #58), Boolean examples (lines 73 to 76), a string example (line 90) and
finally the more complicated drama::gitarg::Id class from line #102.

Example 4–4. Reading a structure with gitarg (for source - see example 4.3 source)
1. /*
2. * We want to accept an argument which translates to one of the
3. * Enum values in MyArgEnum. We must accept strings, which
4. * gitarg::Enum can convert to the enumerated values.
5. *
6. * The enumerated values must have integer values from 0 up.
7. * There needs to be an extra "Invalid" value, which is
8. * typically named "Invalid" but anything is allowed.
9. */
10. enum MyArgEnum { Item1=0, Item2, Item3, Invalid };
11. /*
12. * This is a sub-class of EnumLookupClass used to convert

AAO/DRAMA2 Section 4.3 39 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

13. * between the strings representing MyArgEnum and the
14. * integer value equivalents of the enum values.
15. */
16. class MyArgEnumLookup : drama::gitarg::EnumLookupClass {
17. public:
18. /* Returns the maximum normal value of the enum as int */
19. unsigned int GetMaxValue() const override final {
20. return ((int)(Invalid))-1;
21. }
22. /* Return a pointer to an array of string equivalents */
23. const char ** GetStringArray() const override final {
24. static const char *table[] =
25. { "STRITEM1", "STRITEM2", "STRITEM3", 0 };
26. return table;
27. }
28. };
29.
30. static void ExamineIt(const drama::sds::Id &topLevel)
31. {
32. /* We could use SDS Arg style calls to read the structure
33. * but instead we will use gitarg, it has a lot of useful
34. * features.
35. */
36.
37. /*
38. * This value is fetched from the item named "Argument1"
39. * (constructor arg #2) within the SDS structure in
40. * topLevel, or the 1st (constructor arg #3) item in the
41. * structure if the item named "Argument1" does not exist.
42. */
43. drama::gitarg::Enum<MyArgEnumLookup, MyArgEnum> arg1(
44. topLevel, // Source SDS structure
45. "Argument1", // Name of item we are interested in
46. 1 // Position of item we are interested in
47.);
48.
49. std::cout << arg1 << " (" << std::string(arg1)
50. << ")" << std::endl;
51.
52. /*
53. * Declare an item, which is of type gitarg::Int, an
54. * integer within a specified range. Fetch from the
55. * item named "Argument4", or the 4th item in the
56. * structure if that does not exist.
57. */
58. drama::gitarg::Int<-10, 1000> arg4(
59. topLevel, // Source SDS structure
60. "Argument4", // Name of item we are interested in
61. 4 // Position of item we are interested in
62.);
63.
64. std::cout << "Argument 4 has the value:"
65. << arg4 << std::endl;
66.
67. /*
68. * Try our set of Boolean values.
69. *
70. * Please ignore the ArgCvt() errors at this point - they
71. * won't appear in a DRAMA program.
72. */
73. drama::gitarg::Bool arg8 (topLevel, "Argument8", 8);

40 of 135 Section 4.4 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

74. drama::gitarg::Bool arg9 (topLevel, "Argument9", 9);
75. drama::gitarg::Bool arg10(topLevel, "Argument10", 10);
76. drama::gitarg::Bool arg11(topLevel, "Argument11", 11);
77.
78. std::cout << "Arguments 8 through 10: "
79. << arg8 << " "
80. << arg9 << " "
81. << arg10 << " "
82. << arg11 << " "
83. << std::endl;
84.
85. /*
86. * Get argument 12 value as a string. Also demonstrating
87. * fetching by number rather the name, since the name
88. * "Argument12" does not exist.
89. */
90. drama::gitarg::String arg12_s(topLevel, "Argument12", 12);
91. std::cout << "Argument 12 has the value\""
92. << arg12_s
93. << "\""
94. << std::endl;
95.
96. /*
97. * The 19th' argument (if we don't find one named "FILE",
98. * which we will) refers to an SDS structure. That could
99. * be passed in the argument, but in this case, the name
100. * of a file containing the structure is passed.
101. */
102. drama::gitarg::Id arg19(topLevel, "FILE", 19);
103. arg19.List();
104.
105. /*
106. * Same argument, via Get() method and by position since
107. * we don't have an argument named Argument13.
108. */
109. drama::gitarg::Id arg13;
110. arg13.Get(topLevel, "Argument13", 13);
111. arg13.List();
112. }

The drama::gitarg::Id class allows more complicated SDS structures to be passed as
part of a command argument structure. Remember that SDS structures can be of any
complexity. With the drama::gitarg::Id class, a complicated structure can be passed
directly in the supplied structure, or via an SDS file the name of which is specified.

4.4 Accessing action arguments
The GetArgument() method of drama::MessageHandler will return any argument
to the action. You should check that you have been supplied a value before you use this,
otherwise the SDS calls will throw an exception.
Example 4–5 show an example a MessageReceived() implementation which does this
(at line #4). The bool operator on the SDS object (line #5) allows you to check if an
argument has been supplied. This example just lists the contents, but you can of course use
any of the features shown in the previous sections to access the argument values. But to
remember that the underlying SDS structure is deleted when MessageReceived()
returns. If you need to keep it about, SdsID::Copy it!

AAO/DRAMA2 Section 4.5 41 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Example 4–5. Accessing message arguments
1. drama::Request MessageReceived() override {
2.
3. // Access action argument
4. drama::sds::Id arg = GetEntry().Argument();
5. // And list it.
6. if (arg)
7. arg.List();
8. return drama::RequestCode::End;
9. }

4.5 Returning SDS structures to the action’s source talk
An action may also return SDS structures to the task that initiated the action. There are two
ways of doing this – trigger messages and action completion message arguments.
First we need to understand a bit of terminology. DRAMA normally talks about “Parent
Actions” and “Child Actions”. The “Parent Action” is the DRAMA action in (normally)
another task that originated the message to start an action. The “Child Action” is the action
that was started as a result of the message. So far, we have been dealing only with the child.
So when action X in task A sends an Obey message to start action Y in task B, X is the parent
action, Y is the child action.

4.5.1 Trigger Messages
Trigger messages allow a child action to send some information to their parent action, but the
child can continue to work. The child action can send multiple trigger messages as required.
What the parent does with the trigger messages is determined by the interface negotiated
between the authors of the two tasks.
Sending trigger messages is very simple, using the SendTrigger() method of
drama::MessageHandler. The argument is the SDS structure to send. The message is
sent immediately and you can send multiple triggers. Example 4–6 shows an example of
doing this. When you try this example with “ditscmd”, a simple message is output
indicting the trigger has been received, with the SDS value converted to a string.

Example 4–6. Sending Trigger messages
1. class HelloAction : public drama::MessageHandler {
2. public:
3. HelloAction() {}
4. ~HelloAction() {}
5. private:
6.
7. drama::Request MessageReceived() override {
8.
9. drama::sds::Id trigArg(
10. drama::sds::Id::CreateArgStruct());
11. trigArg.Put("Argument1", "Hi there");
12. trigArg.Put("Argument2", "Quick brown fox");
13. SendTrigger(trigArg);
14.
15. return drama::RequestCode::End;
16. }
17. };

42 of 135 Section 4.6 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

4.5.2 Action Completion Message Arguments
Whilst trigger messages are a useful feature, a more common way to return an SDS structure
to the parent action is with the message that indicates the child action has completed. This is
a better match in many cases – you start an action, which does something and returns its
result. The SetReturnArg() methods of drama::MessageHandler are used to do
this. Note that such arguments are only sent if your action returns with a request code of
RequestCode::End or RequestCode::Exit.

There is a complexity with return (or output) arguments. Your action code will have
completed (and the destructors in your action code have been run) before DRAMA sends the
message. As a result, any SDS structure you supplied must outlive the completion of your
action.
If you call SetReturnArg() with the drama::sds::Id argument passed by value
(actually by const-reference) then (by default) a deep copy of the SDS item is made. A
reference to this copy will be stored by DRAMA and the copy deleted when DRAMA is
finished with it. This approach works ok with small SDS items, or where you need to keep
the original about but are going to modify it. But other approaches should be considered for
large items. A second argument can tell DRAMA not to copy the item, but instead just keep a
reference to the underlying SDS ID. You might do this if the SDS structure item is static in
some way, such that it will outlive the completion of your action.
The other way to call SetReturnArg()is with the drama::sds::Id argument passed
by (non-const) pointer. If you do this, then DRAMA takes over control of tidying up the
underlying SDS item –deleting it when it is done with it. The reason a non-const pointer is
required is so that your drama::sds::Id item can be modified to ensure its destructor
does not tidy it up. This approach is probably the best in most cases and is what is
demonstrated by Example 4–7 below.

Example 4–7. Setting a completion message argument
1. class HelloAction : public drama::MessageHandler {
2. public:
3. HelloAction() {}
4. ~HelloAction() {}
5. private:
6.
7. drama::Request MessageReceived() override {
8. drama::sds::Id outArg(
9. drama::sds::Id::CreateArgStruct());
10. outArg.Put("Argument1", "Hi there");
11. outArg.Put("Argument2", "Quick brown fox");
12.
13. // Set the output argument. DRAMA Takes control
14. SetReturnArg(&outArg);
15.
16. return drama::RequestCode::End;
17. }
18. };

When you try Example 4–7 with “ditscmd”, the reply argument is simply converted to text
and output. You could also specify the “-v” option to “ditscmd” to cause the structure to
be listed in detail.

4.6 Complex parameters

AAO/DRAMA2 Section 4.6 43 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

In section 2.2 we examined adding and working with task parameters. But all the examples in
that section were simple parameters, either scalar items or strings. In reality, parameters can
be anything that SDS can represent. But in the complex cases, you have to manage more of
the details yourself and only now do you have information to understand how to do that.
Both the drama::Parameter and the drama::ParSys approaches support complex
parameters.

4.6.1 Complex parameters with drama::Parameter
drama::Parameter provides an explicit template specialization for the type
“drama::sds::Id”, which is instantiated at line #21 in Example 4–8. The constructor
(invoked at line #27) requires that you supply an SDS ID via an sds::IdPtr, containing
your complex structure.
In this example, a static method is used to create the structure – line number #6. The
drama::sds::IdPtr type is a instantiation of std::shared_ptr<>, with
drama::sds::Id as the template argument, and is used where we might want pointed to
drama::sds::Id items, as in this case. The method is static because it needs no access
to the class but is called by the constructor.
The drama::Parameter< drama::sds::Id> instantiation provides Get() and
Set() methods to get and set the value of the parameter, see line #37.

Example 4–8. Complex parameters with the drama::Parameter class
1. class DramaExampleTask : public drama::Task {
2. private:
3. HelloAction HelloActionObj;
4.
5. // Create the structured parameter.
6. static drama::sds::IdPtr CreateMyStructParam() {
7. drama::sds::IdPtr param(
8. std::make_shared<drama::sds::Id>(
9. drama::sds::Id::CreateTopLevel("PARAM",
10. SDS_STRUCT)));
11. param->Put("STRUCT_VALUE_1", 11);
12. param->Put("STRUCT_VALUE_2", 21);
13. return param;
14. }
15.
16.
17. public:
18. /*
19. * Structured parameter declaration..
20. */
21. drama::Parameter<drama::sds::Id> structParam;
22. /*
23. * Constructor.
24. */
25. DramaExampleTask(const std::string &taskName) :
26. drama::Task(taskName),
27. structParam(TaskPtr(), "STRUCT_PARAM",
28. CreateMyStructParam()) {
29.
30. Add("HELLO",
31. drama::MessageHandlerPtr(
32. &HelloActionObj,
33. drama::nodel()));

44 of 135 Section 4.6 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

34. // Standard simple EXIT action.
35. Add("EXIT", &drama::SimpleExitAction);
36.
37. drama::sds::Id theParam = structParam.Get();
38. theParam.List();
39. }
40. };

4.6.2 Complex parameters with drama::ParId
The approach used by drama::ParSys is a little different. A separate class is provided,
drama::ParId. This class is a subclass of drama::sds::Id, but only provides the one
constructor, which allows it to be constructed to refer to a named parameter. One additional
method (compared to sds::Id) is provided – Update(). This method is used to notify
DRAMA that you have changed the contents of the item, and is required to ensure that any
tasks, which are “monitoring” the value of the parameter, are notified of the change.
A number of the drama::sds::Id methods have the potential to destroy the parameter, so
these are made “private” to help avoid misuse, and then overridden so that if they are called
(via the drama::sds::Id interface), an exception is thrown. SetFree(), SetDelete(),
ClearDelete(), Outlive(), Delete(), Extract(), Rename(),
COut(), and ShallowCopy() are all impacted here.

Otherwise, you can use drama::sds::Id methods as required to update the parameter
value. Example 4–9 below shows an example of an action doing this after a the parameter
was constructed in a similar way to Example 4–9. It constructs a drama::ParId object to
access the parameter at line #8. It then does some work with it, listing it, changing a value
(with a “named” sds::Id::Put), telling DRAMA it has updated it and then lists it again.

Example 4–9. Complex parameters with drama::ParId.
1. class HelloAction : public drama::MessageHandler {
2. public:
3. HelloAction() {}
4. ~HelloAction() {}
5. private:
6.
7. drama::Request MessageReceived() override {
8. drama::ParId structId(GetTask(), "STRUCT_PARAM");
9. structId.List();
10. structId.Put("STRUCT_VALUE_2", 23);
11. structId.Update();
12. structId.List();
13. return drama::RequestCode::End;
14. }
15. };

AAO/DRAMA2 Section 5.1 45 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

5 Action Rescheduling

DRAMA has always implemented a form of “Cooperative Multitasking” of actions. In
“Cooperative Multitasking”, there is no forced rescheduling of “threads” by the operating
system; instead user code must behavior in an appropriate way to ensure rescheduling is
possible. When DRAMA was originally implemented, this was the only highly portable way
to implement any type of Multitasking within a single program.
This design requires that actions in a task should “Reschedule” to wait for events, rather then
to block waiting for them. When an action “Reschedules”, the DRAMA main loop will
process the next message it has (or will) received possibly triggering another action to run or
the same action to be “Rescheduled”. When this is done right, tasks are very responsive to
messages and points for cancelling or aborting actions are well defined. The approach works
well when actions are sending/receiving messages or are working with hardware. It is harder
to get right if actions have CPU intensive work to do, but DRAMA does provide help for
many of those cases.
DRAMA2 does allow you to implement actions using modern threads (see section 6),
avoiding the need for this “Rescheduling” approach in many cases, but the “Rescheduling”
approach is potentially useful in some cases and is potentially more efficient, and since the
implementation was needed to implement threaded actions, it has been made public and we
describe it in this section.

5.1 Basic rescheduling.
The GetEntry() method of drama::MessageHandler provides information about
why an action entry occurred. One item it provides is the “Sequence” count, indicating what
reschedule event is currently being run. GetEntry().Sequence() will return zero
when the action is first invoked and will be increment for each reschedule event until the
action completes. It will be reset to zero each time the action is invoked (i.e. each time a is
invoked by a message sent to the task).
Various other bits of information is available from GetEntry(). Of particular interest is
GetEntry().Reason(), which returns a code indicating what triggered the entry. This
method will but used in later examples.
The return value from the MessageReceived() method tells the DRAMA main loop
what should be done. We have previously seen the use of the value
“drama::RequestCode::Exit”, which causes the task to exit, and the
“drama::RequestCode::End”, which causes the action to complete. There are various
other possibilities; Stage, Wait, Message and Sleep.

Example 5–1 shows the simplistic example of rescheduling. This action implementation
checks the Action sequence count (line #7) and if it is zero, requests a “Stage” reschedule
event (line #11). A “Stage” reschedule event causes the action to be rescheduled
immediately, after allowing for processing of any messages queued for the task. It is used to
break up operations to keep the task responsive and, in some cases, helps in structuring the
task. When invoked on any other sequence count value, it requests the action end (line #17).

Example 5–1. Basic Rescheduling
1. class HelloAction : public drama::MessageHandler {
2. public:
3. HelloAction() {}

46 of 135 Section 5.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

4. ~HelloAction() {}
5. private:
6. drama::Request MessageReceived() override {
7. if (GetEntry().Sequence() == 0)
8. {
9. MessageUser(
10. "Hello World - from DRAMA 2, first entry");
11. return drama::RequestCode::Stage;
12. }
13. else
14. {
15. MessageUser(
16. "Hello World - from DRAMA 2, second entry");
17. return drama::RequestCode::End;
18. }
19. }
20. };

Below we see the results of running this example
>> ./exam5_1&
>> ditscmd EXAMPLE5_1 HELLO
DITSCMD_dc4:EXAMPLE5_1:Hello World - from DRAMA 2, first entry
DITSCMD_dc4:EXAMPLE5_1:Hello World - from DRAMA 2, second entry

5.2 Rescheduling after a delay.
Whist the “Stage” reschedule event is useful, a more common reschedule request is to delay
your action. First is should be noted that the return type of MessageReceived() is
drama::Request. We have so far been returning a drama::RequestCode
enumerated value, which can be used to construct the required drama::Request type. To
reschedule your action with a delay, you need to return both the RequestCode of Wait
and the time (floating point seconds) you want to delay your action.
Example 5–2 is a minor change to Example 5–1 which implements a 10 second wait.

Example 5–2. Rescheduling after a delay
1. class HelloAction : public drama::MessageHandler {
2. public:
3. HelloAction() {}
4. ~HelloAction() {}
5. private:
6. drama::Request MessageReceived() override {
7. if (GetEntry().Sequence() == 0)
8. {
9. MessageUser(
10. "Hello World - from DRAMA 2, first entry");
11. return drama::Request(
12. drama::RequestCode::Wait, 10) ;
13.
14. }
15. else
16. {
17. MessageUser(
18. "Hello World - from DRAMA 2, second entry");
19. return drama::RequestCode::End;
20. }
21. }

AAO/DRAMA2 Section 5.3 47 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

22. };

5.3 Other reschedule reason codes.
The reschedule code of “Message” is traditionally used when you are rescheduling to wait
for replies to messages sent to other tasks. The “Sleep” code is traditionally used to wait
for other events, such as hardware events were a signal handler might be triggered. It could
wake up the action using one of the (DRAMA C) DitsSignal() series of functions. Both
Message and Sleep codes would normally have a timeout associated with them, so they
are returned in a similar fashion to Wait, above. But unlike Wait, the timeout is not
compulsory.
There is currently no implementation difference between the Message and Sleep codes,
and the only extra feature with the Wait code is that the timeout is compulsory. It was
originally thought that DRAMA might implement different checks based on the code used,
but this was never done.
The Message and Sleep codes are rarely used in DRAMA2, as threads provides
alternatives much of what they are needed for.
The drama::Request class also allows you to return an action completion status codes,
via a different constructor, but this is rarely done in DRAMA2.

5.4 Changing the Action Handler
When breaking an action up with Rescheduling, you often naturally want different
functions/object methods involved in implementing each reschedule event. A naïve way to
implement this would be to check the action sequence number and invoke a different function
or object method based on the sequence. But that is error prone and makes it more difficult to
design library code for use in task implementations. DRAMA provides an alterative; which
is to change the “Handler” to be used for the next reschedule event of the action. The handler
is reset to the original value when the action completes such that the same handler always
handles the start of the action.
The PutObeyHandler() method of drama::MessageHandler provides a way of
specifying an alterative object, implementing the drama::MessageHandler interface, to
be used for the next reschedule event.
Example 5–3 is a reimplementation of Example 5–1 using this approach. A member object of
class MyObeyRescheduleHandler is used to handle the reschedule event. The
PutObeyHandler() method is invoked at line #24 to enable its use for the next
reschedule event. Note that the object involved does not need to be a member of the
HelloAction class, but in this case that is the most convenient structure.

Example 5–3. Changing Obey handlers
1. class MyObeyRescheduleHandler : public drama::MessageHandler {
2. public:
3. MyObeyRescheduleHandler() {}
4. ~MyObeyRescheduleHandler() {}
5. drama::Request MessageReceived() override {
6. MessageUser(
7. "Hello World - from DRAMA 2, second entry");
8. return drama::RequestCode::End;
9. }
10. };

48 of 135 Section 5.5 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

11.
12. // Action definition.
13. class HelloAction : public drama::MessageHandler {
14. public:
15. HelloAction() {}
16. ~HelloAction() {}
17. private:
18.
19. MyObeyRescheduleHandler _reschedHand;
20.
21. drama::Request MessageReceived() override {
22. MessageUser(
23. "Hello World - from DRAMA 2, first entry");
24. PutObeyHandler(
25. drama::MessageHandlerPtr(&_reschedHand,
26. drama::nodel()));
27. return drama::RequestCode::Stage;
28. }
29. };

5.5 Handling Kick Messages when Rescheduling.
An action in a DRAMA task may be “Kicked”. This means another DRAMA task has sent
that action a “Kick” message. Kick messages can be sent by “ditscmd” by adding the “-k”
option, but otherwise look the same as an “Obey” message. Only a running action may be
kicked, if the action is not running the kick message will be rejected.
A Kick message is often be used to abort an action, but it can also be used to provide
additional information to the action. To process a Kick message, the action must have
indicated to DRAMA it is interested in receiving Kick messages, and it must rescheduled to
receive them.
In DRAMA 2, an action may enable reception of Kick messages by specifying a handler for
them using the The PutKickHandler() method of drama::MessageHandler. The
specified object must implement the drama::MessageHandler interface.

Example 5–4 is a modification to Example 5–3 that provides a delay before the reschedule
event happens and implements handling of kick messages, via the MyKickHandler class at
line #15. This is specified as the handler at line #44

Example 5–4. Kick Handlers
1. class MyObeyRescheduleHandler : public drama::MessageHandler {
2. public:
3. MyObeyRescheduleHandler() {}
4. ~MyObeyRescheduleHandler() {}
5. drama::Request MessageReceived() override {
6. MessageUser(
7. "Hello World - from DRAMA 2, second entry");
8. return drama::RequestCode::End;
9. }
10. };
11.
12. /*
13. * Define a kick message handler.
14. */
15. class MyKickHandler : public drama::MessageHandler {
16. public:
17. MyKickHandler() {}

AAO/DRAMA2 Section 5.6 49 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

18. ~MyKickHandler() {}
19.
20. drama::Request MessageReceived() {
21. MessageUser(
22. "MyKickHandler: Kick received");
23. return drama::Request(
24. drama::RequestCode::Wait, 1) ;
25. }
26.
27. };
28.
29. // Action definition.
30. class HelloAction : public drama::MessageHandler {
31. public:
32. HelloAction() {}
33. ~HelloAction() {}
34. private:
35. MyKickHandler _myKick;
36. MyObeyRescheduleHandler _reschedHand;
37.
38. drama::Request MessageReceived() override {
39. MessageUser(
40. "Hello World - from DRAMA 2, first entry");
41. PutObeyHandler(
42. drama::MessageHandlerPtr(&_reschedHand,
43. drama::nodel()));
44. PutKickHandler(
45. drama::MessageHandlerPtr(&_myKick,
46. drama::nodel()));
47.
48.
49. return drama::Request(
50. drama::RequestCode::Wait,20);
51. }
52. };

Below we see this code in action
>> ./exam5_4 &
>> ditscmd EXAMPLE5_4 HELLO&
DITSCMD_4a47:EXAMPLE5_4:Hello World - from DRAMA 2, first entry
>> ditscmd -k EXAMPLE5_4 HELLO
DITSCMD_4a48:EXAMPLE5_4:MyKickHandler: Kick received
>>
DITSCMD_4a47:EXAMPLE5_4:Hello World - from DRAMA 2, second entry

A request returned by kick handler will impact the rescheduling of the Obey itself. The kick
handler may return drama::RequestCode::End to cause the action to end immediately.
It can return drama::RequestCode::KickReqNoChange to not change the
rescheduling of the Obey. This would typically be done if the Kick is rejected for some
reason, in which case you may want to throw an exception or use the drama::Request
constructor which allows you to return a DRAMA Status code to the parent task. In Example
5–4, the action is rescheduling again after a short delay.

5.6 Other ways of implementing handlers (e.g. as functions)
The above examples used objects that are subclasses of drama::MessageHandler to handle
reschedule events. It is also possible to specify functions or methods to implement handlers.

50 of 135 Section 5.6 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

There are variations of drama::Task::Add(),
drama::MessageHandler::PutObeyHandler() and
drama::MessageHandler::PutKickHandler() which take an argument of the
type drama::MessageReceiveFunction. This is declared as

std::function<Request (MessageHandler *)>

By use of std::function<> and/or std::bind(), there are many ways to generate
one of these. Example 5–5 shows two approaches. The first approach is actually the more
complicated, specifying a method of an object as what we want invoked. At lines 26 to 29,
we declare an objected named “f” which represents the AltHandler() method of the
HelloAction class. Note – we don’t care which class is involved here, it does not have to
be the class MessageReceived() is part of.

Then at lines 33 and 34, we bind “f” and an object of the required class together and pass the
result to MessageHandler::PutObeyHandler(). The placeholder is for the
requirement argument. There will be a number of objects created behnd the sence here, but
the result is that AltHandler() is invoked to handle the reschedule of the action.

WARNING: AltHandler() is part of HelloAction which is a sub-class of
drama::MessageHandler. As a result, it has various methods available such as
MessageUser() and PutObeyHandler(). You can’t actually use those methods in
AltHandler(), but must use the equivalent ones avialble in the “MessageHandler *”
object passed as the argument. Using the wrong method here will cause a run-time exception,
mentioning not being invoked as part of an action.
In that AltHandler(), we use the simpler alterative approach of specifying a function
directly. Since the function in question – HandlerFunc(), has the required prototype, we
can specify it directly. Otherwise we could use std::bind() to work around the
prototype.

Example 5–5. Specifying functions/methods as handlers
1. drama::Request HandlerFunc(drama::MessageHandler *mh)
2. {
3. mh->MessageUser("HandlerFunc invoked, action ending");
4. return drama::RequestCode::End;
5. }
6.
7. // Action definition.
8. class HelloAction : public drama::MessageHandler {
9. public:
10. HelloAction() {}
11. ~HelloAction() {}
12. private:
13.
14. drama::Request AltHandler(drama::MessageHandler *mh) {
15. mh->MessageUser(
16. "HelloAction:AltHandler obey routine invoked");
17. mh->PutObeyHandler(HandlerFunc);
18. return drama::RequestCode::Stage;
19. }
20.
21. drama::Request MessageReceived() override {
22. MessageUser(
23. "Hello World - from DRAMA 2, first entry");
24. // Declare "f", a std::function of the right form.

AAO/DRAMA2 Section 5.7 51 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

25. // Needs the address of the method of interest.
26. std::function<drama::Request (
27. HelloAction*,
28. drama::MessageHandler*)>
29. f(&HelloAction::AltHandler);
30. // Put the handler, must bind f and this together.
31. // The std::placeholders::_1 allows for the argument
32. // to the call.
33. PutObeyHandler(std::bind(
34. f, this, std::placeholders::_1));
35.
36.
37. return drama::RequestCode::Stage;
38. }
39. };

It may also be possible to specify a Lambda here. But please beware of the lifetime of any
variables involved used.

5.7 Spawnable Actions
Normally, only one action of a given name can be running in a task at any one time. Most of
the time, this makes sense. For example, an action to Initialise or shutdown (EXIT) a task,
only one of each name should be running at a time. But there are some use-cases where it
makes sense to have multiple actions of the same name running at the same time. In
traditional C DRAMA, this has been rare but useful, as it requires the action to reschedule to
make it work. With threads available in DRAMA2, this becomes more powerful. For
example, you might have a COMPUTE action which does some calculations taking a long time
based on arguments passed to the action. If the calculation is done in a thread on a multi-
CPU machine, then you could run more then one of these at the same time.
In DRAMA, a “Spawnable” action is one that can have multiple independent invocations
running simultaneously . They are more expensive to run then normal actions, but not
dramatically so.
The drama::Spawnable interface class supports creating spawnable actions. You must
sub-class this and implement the Spawn() and ActionEnd() methods. The implemented
class is specified in a call to drama::Task::AddSpawnable() to add the action to the
task.
The drama::Spawnable::Spawn() method is invoked each time the action is started.
It must return a (shared) pointer object that is a subclass of drama::MessageHandler5.
That object will be used to run the action.
When the action is complete, the ActionEnd() method is invoked so that any tidying up
can be done. Note that this is often a null action, since if Spawn() returns a
std::shared_ptr() to the object, it will be deleted automatically when the last
reference is deleted.
Example 5–6 below shows how to do this. At line #31, the HelloSpawnable class is
created as a subclass of drama::Spawnable. It’s Spawn() method returns a

5	For	those	who	are	are	reading	ahead	–	this	can	be	a	sub-class	of drama::thread::TAction,	that	is,	
each	spawned	action	can	run	in	a	different	thread.	

52 of 135 Section 5.7 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

dynamically allocated object of class SpawnStage1, it is that implements the action. In
this case, the action reschedules to SpawnStage2 after 10 seconds.

Example 5–6 Spawnable Action Example
1. /* Stage two of spawned action */
2. class SpawnStage2 : public drama::MessageHandler {
3. public:
4. SpawnStage2() { }
5. ~SpawnStage2() { }
6. private:
7. drama::Request MessageReceived() override {
8. MessageUser("SpawnStage2 invoked");
9. return drama::RequestCode::End;
10. }
11. };
12.
13. /* Stage one of spawned action */
14. class SpawnStage1 : public drama::MessageHandler {
15. SpawnStage2 stage2;
16. public:
17. SpawnStage1() { }
18. ~SpawnStage1() { }
19. private:
20. drama::Request MessageReceived() override {
21. MessageUser("SpawnStage1 invoked");
22. PutObeyHandler(
23. drama::MessageHandlerPtr(
24. &stage2, drama::nodel()));
25. return drama::Request(
26. drama::RequestCode::Wait, 10) ;
27. }
28. };
29.
30. /* Class which is used to spawn the action */
31. class HelloSpawnable : public drama::Spawnable {
32. public:
33. HelloSpawnable() {}
34. ~HelloSpawnable() {}
35. private:
36. drama::MessageHandlerPtr Spawn() override {
37. return drama::MessageHandlerPtr(new SpawnStage1());
38. }
39. void ActionEnd(drama::MessageHandlerPtr /*obj*/) override {
40. }
41.
42. };
43.
44.
45. // Task Definition
46. class DramaExampleTask : public drama::Task {
47. private:
48. HelloSpawnable HelloActionObj;
49. public:
50. /*
51. * Constructor.
52. */
53. DramaExampleTask(const std::string &taskName) :
54. drama::Task(taskName) {
55.
56. AddSpawnable("HELLO",

AAO/DRAMA2 Section 5.7 53 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

57. drama::SpawnablePtr(&HelloActionObj,
58. drama::nodel()));
59. // Standard simple EXIT action.
60. Add("EXIT", drama::SimpleExitAction);
61.
62. }
63. };

In this example, since the action will run for 10 seconds, you can start a number of terminal
windows and check that you can send it multiple times simultaneously

54 of 135 Section 6.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

6 Implementing Actions using Threads.

The real power of DRAMA 2 comes from its ability to use threads. Much of the complexity
of a traditional DRAMA task arises due to the need to keep the task responsive to messages,
meaning it must avoid blocking. In traditional DRAMA tasks, I/O is implemented using say
UNIX signals or the UNIX select() call, such that the action can return control to the
main DRAMA loop whilst waiting for a response. Intensive computing must be broken up
into components that can be interrupted and use of external non-DRAMA libraries for
intensive computing or blocking I/O cause problems.
With threads, a DRAMA2 action implementation can avoid rescheduling but keep the task
responsive to messages. The coding can often be far simpler, with a more obvious flow of
control.
Most existing threaded code on Unix platforms is implemented using the POSIX pthreads
library. This is a C language interface with some significant complexities. C++11 provides
its own thread implementation and this is what is used by DRAMA2.

6.1 Major differences between pthreads and C++11
This list was taken from a paper presented to the 17th Geant4 Collaboration Meeting, by
Marc Paterno (Fermilab). The paper is available from:
 http://indico.cern.ch/event/199138/session/6/contribution/20/material/paper/0.pdf 6

• pthreads is a C library, and was not designed with some issues critical to C++ in
mind, most importantly object lifetimes and exceptions.

• pthreads provides the function pthread_cancel to cancel a thread. C++11
provides no equivalent to this.

• pthreads provides control over the size of the stack of created threads; C++11 does
not address this issue.

• C++11 provides the class std::thread as an abstraction for a thread of execution.

• C++11 provides several classes and class templates for mutexes, condition variables,
and locks, intending RAII7 to be used for their management.

• C++11 provides a sophisticated set of function and class templates to create callable
objects and anonymous functions (lambda expressions) that are integrated into the
thread facilities.

The document mentioned above is a good quick introduction to C++11 threads.
It must be noted that the use of RAII to control thread resources is at the center of the design
of the C++11 thread library and all of its facilities, and is also heavily used by DRAMA2.

6.2 Implementing C++11 Threads in any Application
There is nothing special about the function to be executed by a thread, except that it is good
practice to prevent it from exiting on an exception, which would result in a call to

6	This	link	may	not	open	in	Safari	correctly.		You	might	need	to	copy	the	text	into	Safari	and	open	it	that	
way.	
7	Resource	Allocation	Is	Initialization	

AAO/DRAMA2 Section 6.3 55 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

std::terminate. DRAMA Action implementations use std::async(), below, to run
threads, which ensures any exceptions are handled correctly (action terminates and returns a
bad DRAMA status, task does not terminate.).
The document linked to above provides a very quick intro to C++11 Threads, whilst the book
“C++ Concurrency in Action”, by Anthony Williams, ISBN 1933988770, provides a very
detailed introduction. There are many in-between levels of information available on the web.
It should be noted that the basic DRAMA2 Threaded action implementation requires little
knowledge from the user about C++111 threads.

6.2.1 Futures and async.
C++11 provides the class std::future, which can be used to return the value of a
function run in its own thread of execution. Additionally, it can return any thrown exception
(that is, the exception is transferred to the parent thread when it waits on the future). This is
done by using template std::async is used to create the future. DRAMA uses this
function to create action threads and it is suggested you consider it for any other threads you
create.

6.2.2 Relationship to POSIX Threads.
On supported Unix style platforms (Linux, MacOsX), C++11 threads are usually8
implemented using POSIX threads. The underlying POSIX thread associated with a C++11
thread is available using std::thread::native_handle member function. You may
need to access this for cancellation, priority changes etc. The impact of cancellation on
resources must be considered, since the C++11 code will presume destructors are run and if
they are not, then locks may remain outstanding.

6.3 Basic DRAMA2 Approach
The DRAMA Internals and C interfaces were not written with threads in mind. A small
number of global variables are used to maintain the task internal state; with the aim having
been to ensure DRAMA C functions had simple interfaces. Update conflicts when accessing
these variables is main area of concern.
The approach to working with threads used by DRAMA2 is based on one that proved
successful in the DRAMA JAVA interface. One thread is made responsible for processing all
DRAMA messages, in DRAMA2 this is the thread that invokes
drama::Task::RunDrama(). Other threads can invoke DRAMA routines, but a lock is
used to ensure no conflict. When RunDrama() is waiting for a message it does not need the
lock, but takes it when processing a message.
But the DRAMA JAVA Interface did not allow actions to be implemented in threads. The
threads were manly used to allow user interface threads to send DRAMA messages, that is,
they were about access to DRAMA’s UFACE context (User Interface context). A JAVA
Thread could send messages, but all messages, including action implementations, were
processed in thread that processed the DRAMA messages.

8	How	threads	are	implemented	is	determined	by	the	C++	STL	implementation	you	are	using,	but	both	
GCC	and	Clang	compilers,	when	running	on	Mac	OS	X	and	Linux,	provide	STL	implementations	that	
implement	the	using	POSIX	threads.	

56 of 135 Section 6.4 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

DRAMA2 allows actions to be run entirely within separate threads, and likewise, UFACE
context message replies can be returned to the initiating thread. When a DRAMA2 Threaded
action sends a message and wants to wait for the reply, it waits for a C++11
std::condition_variable to be notified, blocking the thread until the notification is
received. The reply message will be received by drama::Task::RunDrama(), which
will notify the condition variable, causing the thread to wake up.
The taking and releasing of the required lock, and the wait for the condition variable are all
wrapped up such that user code simply sends a message, with the thread blocked until the
reply is received or a timeout occurs.
The rest of this section deals with implementing actions using threads, but not with the
sending of messages, that is covered in Section 7.

6.4 Implementing DRAMA Actions using threads
It is relatively simple to have your DRAMA action run in a separate thread. Instead of sub-
classing drama::MessageHandler, your action implementation should be a sub-class of
drama::thread::TAction. Instead of implementing
MessageHandler::MessageReceived, it implements TAction::ActionThread.
Example 6–1 below shows what this looks like:

Example 6–1. Implementing an action with a thread
1. class HelloAction : public drama::thread::TAction {
2. public:
3. HelloAction(std::weak_ptr<drama::Task> theTask) :
4. TAction(theTask) {}
5. ~HelloAction() {}
6. private:
7.
8. void ActionThread(const drama::sds::Id &) override {
9. MessageUser("Hello World - from threads DRAMA 2");
10. }
11. };
12.
13. // Task Definition
14. class DramaExampleTask : public drama::Task {
15. private:
16. HelloAction HelloActionObj;
17. public:
18. /*
19. * Constructor.
20. */
21. DramaExampleTask(const std::string &taskName) :
22. drama::Task(taskName), HelloActionObj(TaskPtr()) {
23.
24. Add("HELLO", drama::MessageHandlerPtr(
25. &HelloActionObj, drama::nodel()));
26. // Standard simple EXIT action.
27. Add("EXIT", &drama::SimpleExitAction);
28. };

It should be noted that the thread::TAction constructor needs the drama::Task object
address passed to it, see line #3 and line #21. Otherwise this is easy, and very similar to
Example 1–1.

AAO/DRAMA2 Section 6.5 57 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

The thread::TAction class provides its own MessageUser method, which sets up the
DRAMA context correctly such as to emulate MessageHandler::MessageUser (that
is, a parent action sees the message as having come from the action). No request needs to be
returned as the action completes when the thread completes.
In this example, TAction::ActionThread is implemented within its own thread. The
DRAMA task will remain responsive whilst that thread is running. Of course, in this
example, it completes quickly anyway, but it is easy to demonstrate it remains responsive:
For example, add some code to cause the thread to block (say using
std::this_thread::sleep_for) and then send a second action (any name, anything
but EXIT will be rejected immediately) to it. If you try this with Example 1–1, the response
won’t occur until the action wakes up and completes.
Note that if you do send EXIT to the task whilst the action thread is running, the task will not
EXIT until the thread completes. This is because the action thread must be “joined” to the
main thread before the task can exit9.

6.5 Accessing Action Arguments
Any argument to action the is accessible from the drama::sds::Id argument supplied to
drama::TAction::ActionThread. Example 6–2 is a minor modification of Example
6–1 showing this.

Example 6–2. Threaded action argument
1. void ActionThread(const drama::sds::Id &id) override {
2. if (id)
3. {
4. MessageUser(
5. "Action was supplied with an argument");
6. id.List();
7. }
8. else
9. {
10. MessageUser(
11. "Action was NOT supplied with an argument");
12. }
13. }

It must be noted that in order to ensure any SDS argument is valid when the thread is
running, TAction::ActionThread is supplied with a copy of the item supplied to the
action, since the item supplied to the action no longer available when DRAMA finishes
processing the message. This can impact program performance if the SDS argument
structure is very large, and it is possible other designs might be appropriate when an action
expects very large arguments.

6.6 Kick Messages.
It is possible to kick an action implemented with threads, but the action must be waiting for
the kick, using one of the drama::thread::TAction::WaitForKick* methods.
WaitForKick will wait without a timeout, or you can request a timeout in a certain period
with WaitForKickTimeoutIn or at a certain time with WaitForKickTimeoutAt.

9	You	could	detach	your	thread,	which	would	avoid	this,	but	then	DRAMA	will	have	problems	when	the	
action	completes	before	the	task,	as	it	expects	to	join	the	thread	to	recover	status	information.	

58 of 135 Section 6.7 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

All of these methods allow you to access any SDS argument to the Kick message. As per the
original obey, the SDS argument is actually a copy of the argument in the message, so if the
size is likely to be large, consider carefully if threaded actions are the appropriate approach.
To fetch the argument, you need to supply a drama::sds::IdPtr item which is a
std::shared_ptr for an sds::Id. This is needed to ensure the item is released
correctly only when everything is finished accessing it.
Example 6–3 is a variation on Example 6–1 and implements a 15 second wait for a kick to
occur. If kicked, it checks if there is an argument and if there is, outputs it.
WaitForKickTimeoutIn returns true if the kick was received, false if it timed out. This
version of WaitForKickTimeoutIn takes an unsigned integer number of seconds, but a
version which accepts a std::chrono::duration is also available.

Example 6–3. Kicking a threaded action
1. void ActionThread(const drama::sds::Id &) override {
2.
3. MessageUser("Waiting for kick.");
4. // Item used to receive Kick argument.
5. drama::sds::IdPtr
6. Arg{std::make_shared<drama::sds::Id>()};
7. // Wait for a kick, timeout of 15 seconds.
8. if (WaitForKickTimeoutIn(15, &Arg))
9. {
10. // Kick received.
11. if (*Arg)
12. {
13. std::string MyArgument;
14. Arg->Get("Argument1", &MyArgument);
15. MessageUser("Received Kick with argument \"" +
16. MyArgument +
17. "\"");
18. }
19. else
20. {
21. MessageUser("Received Kick without argument");
22. }
23. }
24. else
25. {
26. MessageUser("Wait for kick timed out");
27. }
28. }

6.7 User initiated threads
Threaded actions become far more interesting when they are themselves running multiple
threads. How the action thread and any child threads interact is up to the programmer, but it is
possible for child threads of an action thread to use DRAMA facilities in the context of the
action passing the action object to the child thread. Example 6–4 shows a thread starting a
child thread. The “HelloAction” pointer is passed to the child thread so it can access
DRAMA features. Both threads will output DRAMA messages and waiting for a kick
message. The one kick message will wake up all waiting threads.

Example 6–4. Theaded action with child thread
1. class HelloAction : public drama::thread::TAction {
2. public:

AAO/DRAMA2 Section 6.7 59 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

3. HelloAction(drama::Task *theTask) : TAction(theTask) {}
4. ~HelloAction() {}
5. private:
6.
7. void ActionThread(const drama::sds::Id &) override {
8.
9. MessageUser("Starting second thread");
10. std::thread childThread(SecondThread, this);
11. MessageUser("First thread waiting for kick.");
12. // Item used to receive Kick argument.
13. drama::sds::IdPtr
14. Arg(std::make_shared<drama::sds::Id()};
15. // Wait for a kick, timeout of 15 seconds.
16. if (WaitForKickTimeoutIn(15, &Arg))
17. {
18. // Kick received.
19. if (*Arg)
20. {
21. std::string MyArgument;
22. Arg->Get("Argument1", &MyArgument);
23. MessageUser(
24. "First thread kicked with argument \"" +
25. MyArgument +
26. "\"");
27. }
28. else
29. {
30. MessageUser(
31. "First thread kicked without argument");
32. }
33. }
34. else
35. {
36. MessageUser("Wait for kick timed out");
37. }
38. MessageUser("First thread waiting to join child.");
39. childThread.join();
40. MessageUser("Threads have joined, action complete.");
41. }
42. };
43. static void SecondThread(HelloAction *action)
44. {
45. action->MessageUser(
46. "Second thread running, waiting for kick");
47. drama::sds::IdPtr Arg{std::make_shared<drama::sds::Id>()};
48. if (action->WaitForKickTimeoutIn(10, &Arg))
49. {
50. action->MessageUser("Second thread, received kick.");
51. if (*Arg)
52. {
53. std::string MyArgument;
54. Arg->Get("Argument1", &MyArgument);
55. action->MessageUser(
56. "Second thread kicked with argument \"" +
57. MyArgument +
58. "\"");
59. }
60. else
61. {
62. action->MessageUser(
63. "Second thread kicked without argument");

60 of 135 Section 6.8 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

64. }
65. }
66. else
67. {
68. action->MessageUser(
69. "Second thread, wait for kick time out.");
70. }
71. }

What Example 6–4 fails to do is to correctly handle any exceptions thrown in the child
thread. As written, if the child throws an exception, the program is terminated. A better
solution might be to run the thread via std::async. If run this way, exceptions can be
transferred to the parent thread. This experiment is left to the reader and I don’t want to have
all the fun10.

6.7.1 POSIX Threads
In Example 6–4, the child thread is a C++11 thread. There is nothing to stop you using a
POSIX thread (or any other supported thread type). The only real condition is that the C++11
Mutex works, which is not thread architecture specific.
As C++11 threads are normally implemented on Unix platforms with POSIX threads, you can
use std::thread::native_handle to access the underlying POSIX thread. This
might allow you to adjust the priority of the thread or to cancel it. You need to think very
carefully about cancelling threads if you think you need to. It is likely a POSIX
Asynchronous Thread Cancelation will leave resources in undefined states, and even
Synchronous Thread Cancelation can cause problems, as it is undefined if C++ destructors
are invoked11
Be warned that if you change the priority of threads, you must give careful consideration to
the potential consequences to avoid “priority inversion” issues12.

6.8 Kicking threads that are blocked.
One of the benefits of implementing actions using threads is the ability to invoke code that
will block without making the task unresponsive. There are many possible causes, a blocking
read(), a CPU intensive loop, a wait on a mutex or semaphore. For any of these events, it is
still desirable in many cases to be able to unblock the thread and cause the action to complete.
Such a thread could be cancelled using pthread_cancel(), but this presents a host of
potential issues, including not tidying up the DRAMA action correctly. It was realized13 that

10	I	suggest	modifying	the	example	to	throw	an	exception	from	the	child,	demonstrating	the	failure.		Then	
rewrite	appropriately	to	see	the	exception	transferred	through	to	the	parent	thread	and	reported	via	
DRAMA.	
11	Some	information	suggests	that	some	systems	may	do	this.	
12	In	POSIX	threads,	the pthread_mutexattr_setprotocol()	function	can	be	used	to	enable	
priority	inheritance.	It	is	unclear	if	this	is	supported	in	Mac	OS	X		and	linux,	if	it	is	the	default	and	what	
C++11	does	with	its	own	mutexs	(probably	based	on	POSIX	mutex).	
13 K. Shortridge and T. J. Farrell, "Progress in cancellable multi-threaded control software", Proc. SPIE 7740,
Software and Cyberinfrastructure for Astronomy, 774029 (July 19, 2010); doi:10.1117/12.856217;
http://dx.doi.org/10.1117/12.856217

	

AAO/DRAMA2 Section 6.9 61 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

whilst there is no reliable way of unblocking a thread in general, there is often some way of
unblocking a particular operation. For example, a blocking read() can be aborted by
closing the file descriptor. For a CPU loop, it may be practical to check a cancel flag
regularly. For a semaphore wait, sending a unix signal to the thread will abort the wait. As a
result, what is needed is a well-defined way for a Kick message to an action to invoke user-
defined code when the action is blocked.
The DRAMA2 solution is the drama::thread::KickNotifer class. From an action
thread, create a KickNotifier object or a sub-class just before code that will block. This
results in a new thread being created. This new thread will process any kick messages
received by the action. User code can ask if a kick has been received using WasKicked()
or a sub-class can provide the Kicked() method, which is invoked when a kick is received.
The KickNotifier destructor will destroy the thread created by the constructor.

A user implementation of the KickNotifier::Kicked() method may do what is
necessary to unblock the action thread.
Example 6–5 shows the use of KickNotifier in the simpler case, where a hard CPU loop
that can check for a flag occasionally is invoked. It is left to the reader to try the more
complex case of sub-classing KickNotifier, but authors should beware that
KickNotifier::Kicked() is invoked in the thread created by KickNotifier, which
may introduce data access problems requiring locks (see 6.10 for help with this).

Example 6–5. Kicking a blocked thread.
1. class HelloAction : public drama::thread::TAction {
2. public:
3. HelloAction(std::weak_ptr<drama::Task> theTask) :
4. TAction(theTask) {}
5. ~HelloAction() {}
6. private:
7.
8. void ActionThread(const drama::sds::Id &) override {
9. MessageUser("Action Starting");
10. drama::thread::KickNotifier unblockObj(this);
11. for (unsigned i = 0; i < 50 ; ++i)
12. {
13. for (unsigned j = 0; j < 100000000 ; ++j)
14. {
15.
16. }
17. MessageUser("Alive");
18. if (unblockObj.WasKicked())
19. {
20. MessageUser("Action Was kicked.");
21. return;
22. }
23. }
24. MessageUser("Action complete");
25. }
26. };

KickNotifier does provide the ability the process multiple kick messages, as well as to
read the argument to the kick message, both via the Kicked() method implementation. The
main outstanding case is the hard CPU loop which cannot be modified to check for a flag.

6.9 Trigger Messages, Output Arguments

62 of 135 Section 6.10 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

The drama::thread::TAction also has a SendTrigger() method, which works in the
same way as drama::MessageHandler’s method of the same name (see section 4.5.1).

Simliarly, there are also drama::thread::Taction::SetReturnArg methods,
working in the same way as drama::MessageHandler’s method of the same name (see
section 1). But it should be noted that this can only be sent when the action thread has
compeleted.

6.10 Other ways of specifying handlers (e.g. as functions)
In section 5.6 we saw how non-threaded action handlers could be implemented as functions
rather then using objects. The same applies to action threads. In this case, there is a method
drama::Task::AddTA() which takes an argument of type
thread::ThreadActionFunction. This is declared as

std::function<void (drama::thread::TAction *, const drama::sds::Id &)> ;

Example 6–6 below shows one approach to doing this. At line #21, we add the action,
specifying a function of the correct prototype to use. The implementation function is actually
very simple code from lines 1 to 8. The important feature is that the first argument must be
used to access DRAMA.

Example 6–6. Implementing a thread action with a function.
1. static void HelloThreadFunc(
2. drama::thread::TAction *threadAct,
3. const drama::sds::Id &obeyArg)
4. {
5.
6. threadAct->MessageUser(
7. "Action thread function running");
8. }
9.
10.
11. // Task Definition
12. class DramaExampleTask : public drama::Task {
13. public:
14. /*
15. * Constructor.
16. */
17. DramaExampleTask(const std::string &taskName) :
18. drama::Task(taskName) {
19.
20. // HELLO action, implemented via thread.
21. AddTA("HELLO", HelloThreadFunc);
22. // Standard simple EXIT action.
23. Add("EXIT", drama::SimpleExitAction);
24.
25. }
26. };

As per section 5.6, there are many ways of working with this. For example, std::bind()
could used to bind arguments to functions with more arguments then standard.
There is also an overload of drama::Task::Add() which takes a function of type
MessageReceiveFunction, in this case, it is a non-threaded action we are
implementing via an action. MessageReceiveFunction is declared as

AAO/DRAMA2 Section 6.11 63 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

std::function<drama::Request (drama::MessageHandler *)> ;

6.11 Locks - Working with older DRAMA interfaces or other shared data
Threaded code must take a lot of care if it wishes to work with older DRAMA C or C++
Interfaces. User code must ensure that the lock to access DRAMA internal is taken and that
the DRAMA “internal context” is set correctly. The later means that the DRAMA system
knows which action is currently being executed.
In almost all cases, this can be done by constructing an object of type
drama::thread::AccessDrama before executing the traditional DRAMA code you
wish to execute. This uses RAII to ensure the DRAMA internals are restored correctly. Pass
the action’s drama::TAction object address to the AccessDrama constructor. From the
point one of these is constructed, until the destructor is run, the DRAMA lock is taken and the
DRAMA Context is set to that of the action. Since the lock is taken, you can also use this
object to lock access to any shared data of interest.
Alternatively, you may want to take the DRAMA lock but not switch the context. This might
be usefull for using the DRAMA lock around resource contention issues in your own
program. The DRAMA lock itself is available via drama::Task::Lock(). You should
create an object of type drama::Task::guardType (currently a std::lock_guide
type) or drama::Task::uniqueLockType (currently a std::unique_lock type)
as required, with this lock as its argument, using RAII, to protect your code.
It should be noted that the DRAMA lock is a recursive lock, based on
std::recursive_timed_mutex, so you have no problem taking it if the thread already
has it.
Note that it is very important that:

1. You hold the DRAMA lock for as short a period as possible to ensure other
threads are not blocked for longer then necessary.

2. That careful consideration is given to the potential consequences if thread
priorities are changed from normal, so as to avoid “priority inversion” issues12.

3. That careful consideration is given to the potential consequences if your
application implements its own lock rather then using the DRAMA lock.

In cases 2 and 3 above, the risk is deadlock!

6.12 Interactions with signals
Threads and Unix Signals do not work well together. A traditional UNIX signal will be
delivered to one thread only, but may be directed towards any thread that has not blocked the
signal. If starting an application from scratch, you would avoid using UNIX signals in a
program with threads. But DRAMA has been around for a long time and does use UNIX
signals, in particular, SIGALRM.
The normal way to deal with Threaded applications that might receive signals is to block
signals in all threads but the one intended to receive them. In the DRAMA2 case, the thread
invoking drama::Task::RunDrama should receive the signals. Threads started by
DRAMA will have all signals blocked, and a child thread inherits its signal mask from its
parent, so Example 6–4 is safe without further work.

64 of 135 Section 6.13 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

If creating threads yourself, from outside a DRAMA Action thread, you should ensure all
signals in the thread are blocked. First, before creating the thread, construct and object of
type drama::thread::SignalBlocker. This class’s constructor will block signals
and its destructor will restore the signal state. This is done to ensure you don’t get a signal
whilst the thread is being created, leaving it in an undefined state. Then, as the first line in
you thread, invoke drama::thread::BlockSignals(), which blocks all signals to
the thread.

6.13 Thread Programming Issues
In addition to the correct usage of locks (See section 6.11, above) there are other issues you
must beware of with thread program. This section lists some which have impacted DRAMA
programs.

6.13.1 Threaded Programs not exiting when expected.
This can happen if you if have non-detected threads still running They will block program
exit in various ways.

6.13.2 Delayed Exception delivery
Consider the following code segment (which won’t compile, but is close)
1. void test(drama::thread::TMessHandler *tMessHandler,
2. drama::Path *task)
3. {
4. // Start a thread which sends an OBEY PROCESS
5. std::future<void> processFuture = std::async(
6. std::launch::async, [this, task] {
7. RunProcess(tMessHandler task); });
8.
9. // Send another action, whilst the first is still running
10. task->Obey(tMessHandler, "SET_WINDOW");
11. ...
12. task->Kick(tMessHandler, "PROCESS");
13. // Wait for PROCESS action to complete.
14. processFuture.get();
15.
16. }

At line #4, this code is starting a thread, which happens to obey an action named PROCESS.
That action will run until kicked.
At line #10, the action SET_WINDOW is sent to the task. Some other things are done and then
at line #12, the PROCESS action is kicked. This will cause the PROCESS action to complete,
hence the RunProcess() thread completes and processFuture.get() will return
then return.
But, if for example, the Obey of SET_WINDOW throws an exception, this code won’t
complete. The throw of the exception triggers the destructor of processFuture(). That
destructor won’t complete until the thread has completed. Since in this case, the PROCESS
action is not kicked, the thread does not complete. The program hangs whilst running the
destructors of the code block.
So how might one handle this suitation: The code below shows one possibility. The Obey
SET_WINDOW and operations before the Kick are wrapped in a try block. The exception

AAO/DRAMA2 Section 6.13 65 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

handler now does the kick and the get of the future (as does the non-exception code – C++
really needs a “finally” clause to a try block.)

1. void test(drama::thread::TMessHandler *tMessHandler,
2. drama::Path *task)
3. {
4. // Start a thread which sends an OBEY PROCESS
5. std::future<void> processFuture = std::async(
6. std::launch::async, [this, task] {
7. RunProcess(tMessHandler task); });
8.
9. try
10. {
11. // Send another action, whilst the first is still running
12. task->Obey(tMessHandler, "SET_WINDOW");
13. ...
14. }
15. catch (...)
16. {
17. task->Kick(tMessHandler, "PROCESS");
18. processFuture.get();
19. throw;
20. }
21. task->Kick(tMessHandler, "PROCESS");
22. // Wait for PROCESS action to complete.
23. processFuture.get();
24.
25. }

What the above doesn’t handle is an exception thrown by the Kick. That is hard to deal with
– particularly as it probably means the thread won’t complete. A timeout on the underlying
OBEY PROCESS combined with ignoring any exception from Kick may provide an escape.
As you can see, threaded code can get complicated!

6.13.2.1 Delayed until an destructor is run
A potentially hard to deal with example of this is where the future::get() operation or similar
is being executed within a destructor. In an example like the above, unless it is caught, the
program will be terminated. See section 3.4 for more details.

66 of 135 Section 7.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

7 Sending Messages to tasks

In all the examples in the previous sections of this document, we have been dealing with tasks
that receive messages and send replies to those messages. These are in effect tasks providing
services within a DRAMA system. They might control hardware or implement CPU
intensive processing. In this section, we deal with the message originators – tasks that initiate
messages to other tasks and process the replies.
Such tasks are used to implement user interfaces and to implement system “control tasks”,
used to coordinate a set of tasks. The 2dF system is the largest existing example of such a set
of tasks. The 2dF control task runs a set of about 30 tasks, some of which are also control
tasks running smaller sets of tasks.
This section will deal only with the “control task” case, with user interfaces covered in
section 8.

7.1 DRAMA Task loading and Networking configuration
DRAMA implements a tasking distributed system, with DRAMA tasks able to be run on
various machines. Examples so far have dealt only with a pair of tasks (“DRAMAHELLO”
examples, and ditscmd) running on the same machine. Examples in this section will take
advantage of the DRAMA task loading facilities to load tasks, if needed. You could also
modify these examples to distribute the tasks across different machines.
To enable both loading tasks and distribution of DRAMA systems across various machines,
you must run the DRAMA “networking” tasks. This is done by executing the
“dits_netstart” command on each machine involved, under the same user name14.
They can be shutdown with “dits_netclose”.

7.2 DRAMA 2 Message sending basics
All message sending in DRAMA 2 tasks is done from action threads15 (see section 6).
All message sending routines will block the thread until the message is complete, so if you
wish to send multiple messages from the one action simultaneously, you will need to create a
separate child thread for each simultaneous message.
The drama::Path class is the key class involved. In C language DRAMA, a “path” is a
channel for communication with another task. In DRAMA2, the drama::Path class
provides facilities for sending messages and receiving replies along a path.
In the examples below, we will be using an example target (Server) program implemented in
example code file example_server.cpp. The actual source of this is not particularly
relevant, so will not be examined, but you are welcome to look. This program, by default,
uses the task name “SERVER_TASK”. Setting the first command line argument, which is
done in some examples, can change the task name.

7.3 Path constructor and related methods.

14	DRAMA	Provides	alternatives	to	using	the	same	user	name	on	the	different	machine,	the	direct	
specification	of	the	communications	port	number	via	an	IMP	Startup	file.		See	the	DRAMA	web	pages	for	
details.	
15	Actually	this	is	not	really	true	–	user	interface	code	may	not	use	action	threads,	but	we	leave	that	until	
section	8.		But	the	rest	of	what	is	described	here	works	in	that	case	as	well.	

AAO/DRAMA2 Section 7.4 67 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

The most commonly used drama::Path constructor takes four arguments, two of which
have defaults. Details are in the table below.

Argument Type Description
theTask drama::Task * The DRAMA2 task object.
name std::string The name of the task you with to

talk to, presuming it is already
running. If we load the task then the
name it registers as will be used
instead.

host std::string The name of the host on which to
load the task or on which it is
running. This is only used if the
task is not already running on the
local machine, or is otherwise
known16 to the local machine.
Defaults to an empty string.

Alternatively, you can include the
node name with the target task
name using the name@host
format.

file std::string The file from which to load the
task, if it is not already running. It
will be loaded on the host specified
above.

Once you have constructed such an object, you are able to “Get” the path. Getting a path
involves loading a task if necessary, and then opening the communications channel to the
task. One you have gotten the path to a DRAMA task, communications becomes very
efficient.
Various other methods can be used to set values applied when the program is loaded or when
the path is set up, see sections 7.4.1 and 7.4.2 for details.
There are two other constructors available. One takes only a “drama::Task *” argument; it
creates a path to the task itself, allowing you to send messages to your task using DRAMA,
which is sometimes useful.
The remaining constructor takes a traditional DRAMA DitsPathType variable as the
second argument, allowing drama::Path to take over an existing path.

It should be noted that only in the first case, is it necessary to “Get” the path.

7.4 Loading tasks and Getting Paths
In most cases, the first thing you need to do with a path is to “Get” it. This runs the processes
involved in opening communications with the target task, but may also include loading the
task. Having constructed a drama::Path object, you need only execute the “GetPath” method,
specifying as an argument, the drama::TAction object of your threaded action

16	A	remote	task	is	known	locally	if	another	task	is	already	communicating	with	it.	

68 of 135 Section 7.4 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

implementation. This method will block until the task is loaded (if needed) and the path is
opened for communications.
Example 7–1 below shows how this is done. The name of the task we are getting the path to
is “SERVER_TASK” and if no task of that name is specified, then the program
“./example_server” is loaded and presumed to be the task in question. The method
server.GetPath() will block until the operation is complete, so when it returns, you
can send messages.

Example 7–1. Loading tasks and getting the path
1. class RunAction : public drama::thread::TAction {
2.
3. public:
4. RunAction(std::weak_ptr<drama::Task> theTask) :
5. TAction(theTask), _theTask(theTask) {}
6. ~RunAction() {}
7. private:
8. std::weak_ptr<drama::Task> _theTask;
9. void ActionThread(const drama::sds::Id & /*obeyArg */) {
10. drama::Path server(_theTask,
11. "SERVER_TASK", "",
12. "./example_server");
13. server.GetPath(this);
14. MessageUser("Have gotten path");
15. }
16. };
17.
18. class ClientTask : public drama::Task {
19.
20. private:
21. RunAction RunActionObj;
22. public:
23. /**
24. * Constructor, from here we add actions
25. */
26. ClientTask(const std::string &taskName) :
27. drama::Task(taskName), RunActionObj(TaskPtr()) {
28.
29. Add("RUN", drama::MessageHandlerPtr(
30. &RunActionObj, drama::nodel()));
31. Add("EXIT", drama::SimpleExitAction);
32. }
33. ~ClientTask() {
34. }
35. };

To run Example 7–1, first execute “dits_netstart”. Then run the example client with
“./exam7_1 &”. Finally, use “ditscmd” to send RUN actions to it. E.g.:
> dits_netstart
> ./exam7_1 &
> ditscmd CLIENT RUN
DITSCMD_3296:CLIENT:Loading task SERVER_TASK from "./example_server"
DITSCMD_3296:CLIENT:Task loaded
DITSCMD_3296:CLIENT:Have gotten path
> ditscmd CLIENT RUN
DITSCMD_379a:CLIENT:Have gotten path
>

AAO/DRAMA2 Section 7.4 69 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Note that if “SERVER_TASK” is already running, then the load operation is not needed. The
drama::Path::LogLoad() method can be used to disable the message output when
loading a task, if required.
The following operation order should be noticed.

Get Path.
If Get Path fails and have a file name.

Load Task
If Load Path Ok

Get Path

That is, an attempt is made to get the path. If that fails, and attempt is made to load the task
and if the succeeds, a second attempt is made to get the path. If at any stage

7.4.1 drama::Path methods that impact task loading.
The table below shows the methods, which if executed before drama::Path::GetPath,
will impact task loading, if task loading is done.

Name Description
drama::Path::SetHost Set the name of the host on which to

load the task.
drama::Path::SetArgument Set the command line argument string

to the load.
drama::Path::SetFile Set the file to load the program from.

You can use the
<envvar>:<filename> format if
required.

drama::Path::SetPriority Set the program priority.
drama::Path::SetNames Used to control the inheritance of

environment variables.
drama::Path::SetSymbols Specific to target programs running on

the VMS operating system. See the
documentation for details.

drama::Path::SetProg Specific to target programs running on
the VMS operating system. See the
documentation for details.

drama::Path::LogLoad Enable/disable logging of task loading
via MsgOut() (MessageUser())
messages.

7.4.2 drama::Path methods that impact Get Path operations.
The table below shows the methods, which if executed before drama::Path::GetPath,
will the getting of the path.

Name Description
drama::Path::SetName Set the name of the task. If the program

70 of 135 Section 7.5 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

is loaded and registers using a different
name then that name will be used.

drama::Path::SetHost Set the name of the host on which to
find the task, if it is not already known
to the local machine.

drama::Path::SetFlowControl Use to enable flow control on the path.
If invoked, communications are run
differently when buffers fill up. See
DRAMA documentation for more
detail.

drama::Path::SetBuffers Set the DRAMA Path buffers to be
used. This is used to specify the size of
the communications buffers, which
must be large enough for the biggest set
of unprocessed messages.

7.5 Loading non-DRAMA programs.
The “drama::Path” class could be used to load a non-DRAMA program. The
GetPath() method will block until the program exits. If it exits without error, then a
drama::Exception will be thrown indicting, in effect, that it didn’t register with
DRAMA. This will have the status code DRAMA2__PATH_EXITONLOAD. Otherwise it
will throw an exception due to the failure of the program.
Alteratives to drama::Path are the drama::thread::RunProgram() and
drama::thread::RunProgramWaitUntil() functions. These do the same thing
but don’t need a drama::Path() object and don’t throw an exception on the normal exit
of the program. They are the preferred approach to loading non-DRAMA programs.
It must be noted that there is no way for your task to know a non-DRAMA program has
started successfully (other then something you might implement yourself). DRAMA knows if
the program did not execute (say the file does not exist) and it knows it has exited, but can’t
work out if it is running, since the operating system doesn’t provide the information. For
DRAMA programs, a message is arranged when the program initializes DRAMA which
allows the loader to know the program is now running.

7.6 Sending Obey Messages
To send a command to another task, you send an “Obey” message, specifying the thread
action object address and name of the action to invoke. Optional parameters to the method
include any argument to the action, a spot for the return of any argument in the completion
message and an event processor object, which we examine in section 7.8. Example 7–2
expands the “ActionThread” method from Example 7–1 to send an Obey message, of the
Action named “ACTION1”.

Example 7–2. Sending an Obey message
1. void ActionThread(const drama::sds::Id & /*obeyArg */) {
2. drama::Path server(_theTask,
3. "SERVER_TASK", "",
4. "./example_server");
5. server.GetPath(this);
6. MessageUser("Have gotten path, will send obey");
7.

AAO/DRAMA2 Section 7.6 71 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

8. server.Obey(this, "ACTION1");
9.
10. MessageUser("Subsidiary Action completed");
11.
12. }

7.6.1 Adding an argument to the Obey message
The third parameter to the drama::Path::Obey method is the SDS ID of an argument to
the message. Anything that can be constructed in SDS can be sent, as long as the message
buffer sizes are large enough. (The buffer sizes can be set using the
drama::Path::SetBuffers method, before the GetPath method is invoked, the
defaults detail with most small message cases). Example 7–3 is a modification of Example 7–
2, which sends an argument.

Example 7–3. Sending an Obey with an argument.
1. void ActionThread(const drama::sds::Id & /*obeyArg */) {
2. drama::Path server(_theTask,
3. "SERVER_TASK", "",
4. "./example_server");
5. server.GetPath(this);
6. MessageUser("Have gotten path");
7. drama::sds::Id messageArg(
8. drama::sds::Id::CreateArgStruct());
9. messageArg.Put("Argument1", "Hello from example 7.3");
10. server.Obey(this, "ACTION1", messageArg);
11. MessageUser("Subsidiary Action completed");
12. }

If you need to specify the fourth or fifth parameter to drama::Path::Obey, but don’t
want to specify an argument to the Obey message, you need to specify a null SDS item as the
third argument, using drama::sds::Id::CreateNullItem.

7.6.2 Recovering the completion message argument value from an Obey.
The fourth parameter to the drama::Path::Obey method is used to retrieve any
argument to the action completion message. If interested in the argument, you must pass the
address of a drama::sds::IdPtr item, which is a typedef of
std::shared_ptr<drama::sds::Id>, that is; a shared pointer to a sds::Id. A
shared pointer is used to avoid copying the SDS item (a second time).
Example 7–4 below is a rework of Example 7–2 to show how to access the completion
message argument. The item “returnedArg” is declared at line #7 and passed by pointer at
line #10. You should check a value was actually returned before using it, as per line #11, and
then access the SDS item by dereferencing the pointer as shown at line #14

Example 7–4. Accessing Obey message completion argument
1. void ActionThread(const drama::sds::Id & /*obeyArg */) {
2. drama::Path server(_theTask,
3. "SERVER_TASK", "",
4. "./example_server");
5. server.GetPath(this);
6. MessageUser("Have gotten path");
7. drama::sds::IdPtr returnedArg;
8. server.Obey(this, "ACTION1",

72 of 135 Section 7.7 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

9. drama::sds::Id::CreateNullItem(),
10. &returnedArg);
11. if (*returnedArg)
12. {
13. std::string returnedAsString;
14. returnedArg->Get("Argument1", &returnedAsString);
15. MessageUser(
16. "Subsidiary Action completed, returned arg = \""
17. + returnedAsString + "\"");
18. }
19. else
20. MessageUser(
21. "Subsidiary Action completed, no arg returned");
22. }

If you need to specify the fifth parameter to drama::Path::Obey, but don’t want to
retrieve any completion argument, you need to specify a nullptr as the fourth argument,

7.7 Sending Kick Messages
The drama::Path::Kick method allows you to send Kick messages. The calling
sequence and the way the method is used are exactly like Path::Obey.

Whilst sending kick messages is easy, our example must be changed a fair bit. Rather then
sending ACTION1 to the SERVER_TASK, it sends ACTION2, which will wait 10 seconds
before completing, and it accepts Kick messages. If ACTION2 is sent a Kick message with
an argument (any value) it causes the action to complete immediately. If no argument is
supplied, the action will wait an extra 10 seconds before completing.
The example code implements a second action, named “KICKIT”, which you can use to send
the Kick message. In order to ensure the “KICKIT” action does not need to get the path to
“SERVER_TASK” a second time, the relevant drama::Path variable is now kept within
the ClientTask object, rather then in the ActionThread methods. This was the cause
of much of the structure change, since the action classes must reference the ClientTask
class, which must reference the action classes.
Example 7–5, below, shows all the relevant bits of the example. The main point of interest,
the sending of the Kick message, is at line #84. Note how the input argument to the action is
passed directly to the drama::Path::Kick method. If no argument was supplied, then
nothing will be sent. If it is supplied, it is sent directly on with the Kick message.

Example 7–5. Sending kick messages
1. /*
2. * Note - Definitions of constructors and ActionThread
3. * methods must be after ClientTask is defined.
4. */
5. class RunAction : public drama::thread::TAction {
6.
7. public:
8. RunAction(std::weak_ptr<drama::Task> theTask);
9. ~RunAction() {}
10. private:
11. std::weak_ptr<drama::Task> _theTask;
12. void ActionThread(const drama::sds::Id & /*obeyArg */);
13. };
14.
15. class KickItAction : public drama::thread::TAction {

AAO/DRAMA2 Section 7.7 73 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

16.
17. public:
18. KickItAction(std::weak_ptr<drama::Task> theTask);
19. ~KickItAction() {}
20. private:
21. std::weak_ptr<drama::Task> _theTask;
22. void ActionThread(const drama::sds::Id & /*obeyArg */);
23.
24. std::shared_ptr<ClientTask> GetTask() {
25. return std::shared_ptr<drama::Task>(_theTask)->
26. TaskPtrAs<ClientTask>();
27. }
28. };
29.
30. class ClientTask : public drama::Task {
31.
32. private:
33. RunAction _runActionObj;
34. KickItAction _kickItActionObj;
35. drama::Path _serverPath;
36. public:
37. drama::Path &ServerPath() {
38. return _serverPath;
39. }
40. /* Constructor */
41. ClientTask(const std::string &taskName) :
42. drama::Task(taskName),
43. _runActionObj(TaskPtr()),
44. _kickItActionObj(TaskPtr()),
45. _serverPath(TaskPtr(), "SERVER_TASK",
46. "", "./example_server") {
47.
48. Add("RUN", drama::MessageHandlerPtr(
49. &_runActionObj, drama::nodel()));
50. Add("KICKIT", drama::MessageHandlerPtr(
51. &_kickItActionObj, drama::nodel()));
52. Add("EXIT", drama::SimpleExitAction);
53. }
54. ~ClientTask() {
55. }
56. };
57.
58. /* Define RunAction and KickItAction constructors */
59. RunAction::RunAction(
60. std::weak_ptr<drama::Task>theTask) :
61. TAction(theTask), _theTask(theTask) {}
62. KickItAction::KickItAction(
63. std::weak_ptr<drama::Task>theTask) :
64. TAction(theTask), _theTask(theTask) {}
65.
66. /* Define the ActionThread() methods. */
67. void RunAction::ActionThread(
68. const drama::sds::Id & /*obeyArg */) {
69.
70.
71. auto myTask(std::dynamic_pointer_cast<ClientTask>
72. (std::shared_ptr<drama::Task>(_theTask)));
73.
74.
75. myTask->ServerPath().GetPath(this);
76. myTask->ServerPath().Obey(this, "ACTION2");

74 of 135 Section 7.8 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

77. MessageUser("Subsidiary Action completed");
78. }
79.
80. void KickItAction::ActionThread(
81. const drama::sds::Id &kickArg) {
82.
83.
84. GetTask()->ServerPath().Kick(this, "ACTION2", kickArg);
85. MessageUser("Kick of Subsidiary Action completed");
86. }

7.8 Changing how the methods respond to messages.
Various messages may be received when waiting for an Obey or a Kick to complete (more
the Obey then the Kick). For example, trigger messages may be sent back or your action may
be kicked.
The fifth parameter to the drama::Path::Obey and Kick methods specifies the address
of an event processor object which is used to process these messages. This object is of class
drama::MessageEventHandler or a subclass of it. The base class provides the most
commonly required handling of messages, but you can sub-class it implement your own
handling. The table below explains the methods you may wish to override. These methods
will be invoked in the context of the thread that invoked the Path::Obey or Kick method,
and in the DRAMA action context for the invoker, with the DRAMA lock taken. Since the
DRAMA lock is taken, you must not do anything that needs wait for the main DRAMA loop
to process a message, since it won’t run.

Method Description
NewTransaction This method is invoked each time a

message is initiated. It can be used to
access the DITS transaction id of the
messages, which are sent. This is useful
in some cases, such as when transaction
might be orphaned but will need to be
handled, or, for example, if you might
want to kick a spawnable action.
The default is a null operation.
The Path::SpawnKickArg() and
Path::SpawnKickArgUpdate()
methods can be used to convert
transaction id’s into arguments to be used
to kick spawnable actions.

ThreadWaitAbort Will be invoked if, whilst waiting for a
message, the main DRAMA loop exits
(task exiting), or the action thread
completed (we must be running in a
subsidiary thread) or if the user has
invoked
TAction::AbortMessageWaits.

AAO/DRAMA2 Section 7.8 75 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Method Description

The default behavior is to throw an
exception.

TriggerReceived Invoked if a trigger message is received.
The default reports to the user via Ers
that a trigger has been received and gives
a hint about how to handle it.
See section 7.8.1 for an example.

MessageRejected Invoked if the message sent was rejected
by the target task (which happens if the
action is already running or does not
exist)
The default behavior is to throw an
exception.

MessageComplete Invoked if a message complete message
is received.
The default behavior is to throw an
exception if the status in the completion
message is bad, otherwise just to allow
the wait to complete.

TaskDied Invoked if the subsidiary task died whilst
we were waiting for a reply from it.
The default behavior is to throw an
appropriate exception.

UserMessage Invoked if a message for the user is
received. This would normally only
happen for UFACE transactions (see
section 8).
The default behavior is to report the
message to the user.

ErrorReport Invoked if an error report for the user is
received. This would normally only
happen for UFACE transactions (see
section 8).
The default behavior is to report the
message to the user.

KickReceived Invoked if an action waiting on a
message receives a kick message during
the wait.
The default reports to the user via Ers
that a Kick has been received and gives a
hint about how to handle it.

76 of 135 Section 7.8 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Method Description

Should return true to indicate the thread
should continue waiting for messages
from the subsidiary action, false to stop
waiting and to orphan the outstanding
transaction (an exception is thrown).
See section 7.8.2 for more information.

BulkTransferred Only received if the message send
included a bulk data argument. See
section 9 for details on bulk data.
This message is only received if the
receiver of the bulk data message is
reporting progress on its use of the bulk
data. The arguments provides details on
the bulk data use.
May be invoked zero or many times. The
default is a null operation.

BulkDone Only received if the message send
included a bulk data argument. See
section 9 for details on bulk data.
Is invoked when the receiver of the bulk
data message indicates it has finished
reading the message, and the sender is
free to reuse the item.
The default is a null operation.

WaitTimeout This method is invoked if one of the
"...WaitUntil()" methods times out.
The default implementation of this will
return false. A subclass might want to
override this if it is doing things that
might require the timeout to change.
Whilst it won't be invoked until the
original timeout occurs (so you can't
change to a shorter timeout), you can
extend the timeout by returning true,
having updated the wait until time which
is supplied as an argument.

If any of these throw an exception (which many defaults do), that exception is thrown out of
the call of the Path::Obey or Kick method.

Each of these methods have one or more arguments from this set of three:

• A drama::thread::ProcessInfo item, named messInfo. This contains
details of the message that was sent and the sender.

AAO/DRAMA2 Section 7.8 77 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

• A StatusType argument named status. This provides the DRAMA status of the
message. Only available if it makes sense.

• A sds::IdPtr parameter named arg. This is the SDS ID of the argument to the
message, if any. Not all of the methods can have an argument.

The drama::thread::ProcessInfo item is the most interesting and provides access to
the drama::thread::TAction object and drama::Path objects used in sending the
message we are waiting for the reply to, as well as type and name of the message.
A couple of the methods have extra parameters for their special cases.
Examples are given below of handling Trigger and Kick messages, the two cases you are
most likely to be interested in.

7.8.1 Responding to Trigger Messages
Example 7–6, below, shows Example 7–2 modified to handle trigger messages. The action
named ACTION3 in the example_server program will send a trigger message before it
completes, so that is the action sent by this example.
The class TriggerHandler is declared at line #1, as a sub-class of
drama::MessageEventHandler. In this example, only the TriggerReceived()
method is overridden, base-class defaults are used for the other methods.
TriggerReceived() takes parameters messInfo, status and arg. This
implementation ignores the status (it used only in special case trigger messages17), but does
make use of the other method parameters.
At line #13, messInfo.GetHandler() is used to access the
drama::thread::TAction object that sent the message. GetHandler() returns a
const reference to a variable of type drama::thread::TMessHandler, of which
TAction is a subclass. The MessageUser() method is then used to send a message to
the user who sent the RUN action to this task.

Line #15 and line #17 show access to the message name and path, both via messInfo.
At line #21, the SDS argument to the trigger message is output to the user, using the
SdsListToUser() method of TMessHandler, which users a sub-class of
drama::sds::PrintObjectCR which will print the SDS Listing using
MessageUser().

Line #44 shows an object of this type being passed to the drama::Path::Obey()
method.

Example 7–6. Handling trigger messages
1. class TriggerHandler : public drama::MessageEventHandler {
2. public:
3. /* Implement TriggerReceived only, others stay as defaults */
4. void TriggerReceived(
5. /* messInfo contains the info about the message */
6. drama::thread::ProcessInfo messInfo,
7. /* Message status */
8. StatusType /*status*/,

17	Trigger	messages	only	have	a	non-zero	status	if	sent	by	the	DRAMA	Parameter	monitoring	system.		See	
section	7.12	for	more	on	parameter	monitoring,	but	the	details	are	not	required	for	most	task	authors.	

78 of 135 Section 7.8 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

9. /* Any SDS arg to the message */
10. const drama::sds::IdPtr &arg) override {
11.
12. /* Output details of message */
13. messInfo.GetHandler().MessageUser(
14. "trigger message was received from action \"" +
15. messInfo.GetMessName() +
16. "\", to task \"" +
17. messInfo.GetPath().GetTaskName() +
18. "\"");
19. /* List the argument (via MessageUser()) */
20. if (*arg)
21. arg->List(messInfo.GetHandler().SdsListToUser());
22. }
23. };
24.
25. class RunAction : public drama::thread::TAction {
26.
27. public:
28. RunAction(std::weak_ptr<drama::Task> theTask) :
29. TAction(theTask), _theTask(theTask) {}
30. ~RunAction() {}
31. private:
32. std::weak_ptr<drama::Task> _theTask;
33. void ActionThread(const drama::sds::Id & /*obeyArg */) {
34. drama::Path server(_theTask,
35. "SERVER_TASK", "",
36. "./example_server");
37. server.GetPath(this);
38. MessageUser("Have gotten path, will send obey");
39. TriggerHandler myHandler;
40. server.Obey(this,
41. "ACTION3",
42. drama::sds::Id::CreateNullItem(),
43. nullptr,
44. &myHandler);
45. MessageUser("Subsidiary Action completed");
46. }
47. };};

7.8.2 Responding to Kick Messages
Example 7–7, below, shows Example 7–6 modified to handle kick messages rather then
trigger messages. Only the relevant sub-class of drama::MessageEventHandler is
shown below as the rest has no significant difference from Example 7–6, please look at the
source file if you want to see the rest.
This example goes back to using the action named ACTION2 in the example_server program,
since that has a delay that allows us to send the Kick message. KickReceived() is
implemented in a very similar fashion to TriggerReceived() above.
KickReceived() does not have a status argument, but does return a Boolean value.

If true is returned, then the thread will remain blocked waiting for the subsidiary action to
complete. If false is returned, then the wait is cancelled with an exception thrown. The

AAO/DRAMA2 Section 7.8 79 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

message transaction is orphaned (see section 7.10, below, for details on orphaned
transactions).

Example 7–7. Handling kick messages whilst waiting for subsidiary message
1. class KickHandler : public drama::MessageEventHandler {
2. public:
3. /* Implement KickReceived only, others stay as defaults */
4. bool KickReceived(
5. /* messInfo contains the info about the message */
6. drama::thread::ProcessInfo messInfo,
7. /* Any SDS arg to the message */
8. const drama::sds::IdPtr &arg) override {
9.
10. /* Output details of message */
11. messInfo.GetHandler().MessageUser(
12. "kick message was received whilst waiting for action \"" +
13. messInfo.GetMessName() +
14. "\", to task \"" +
15. messInfo.GetPath().GetTaskName() +
16. "\"");
17. /* List the argument (via MessageUser()) */
18. if (*arg)
19. arg->List(messInfo.GetHandler().SdsListToUser());
20.
21. // Return true to allow the wait to continue.
22. // Return false to abort waiting and orphan the
23. // transaction.
24. return true;
25. }
26. };

Note that when running this example, you first send the “RUN” action to CLIENT, you then
kick the “RUN” action in CLIENT, e.g
> ./example_server &
> ./exam7_7 &
> ditscmd CLIENT RUN &
DITSCMD_6bc:CLIENT:Have gotten path, will send obey
DITSCMD_6bc:SERVER_TASK:ACTION2 invoked.
> ditscmd -k CLIENT RUN
DITSCMD_6bc:CLIENT:kick message was received whilst waiting for action

"ACTION2", to task "SERVER_TASK"
DITSCMD_6bc:SERVER_TASK:ACTION2 complete.
DITSCMD_6bc:CLIENT:Subsidiary Action completed

7.8.3 Get Path messages
You can also alter how drama::Path::GetPath() responds to messages sent as part of
loading tasks and getting paths. GetPath() takes an object of type
drama::thread::TransEvtProcessor as its event processor. This is the base class
of the drama::MessageEventHandler class used by Obey() and Kick().

TransEvtProcessor only has two methods – Process() and NewTransaction().
The later works the same as the drama::MessageEventHandler version.
Process() is invoked for each message received and its arguments allow access to the
message details. . Process() will return true indicate the threads should continue
waiting, false to indicate the wait should be stopped.

80 of 135 Section 7.9 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

The default handle for GetPath() class is an object of the class
drama::GetPathEventType.

This area of DRAMA2 is still work in progress, as we are not entirely sure of the
requirements.

7.9 Message waits with timeouts
For each of the message sending and wait methods (drama::Path::Obey(), Kick(),
GetPath(), etc.) there is an equivalent version with a timeout. These have “WaitUtill”
appended to the corresponding method name: drama::Path::ObeyWaitUntil(),
KickWaitUntil(), GetPathWaitUntil() etc. Each of these return “true” if the
operation completed, false if it timed out.
In each of these, the first argument is the C++11 time point until which the method will wait.
These times are specified as an absolute time using the type
std::chrono::steady_clock::time_point. You can construct one of these
items in various ways to achieve any time supported by the underlying C++11 wait on a
condition variable (std::condition_variable::wait_for()). Much of the time
you are likely to want a delay from the current time. The convenience function
drama::CreateFutureTimepoint() provides a shortcut to this.

Example 7–8, below, shows an example.
Example 7–8. Obey with timeout.

1. class RunAction : public drama::thread::TAction {
2.
3. public:
4. RunAction(std::weak_ptr<drama::Task> theTask) :
5. TAction(theTask), _theTask(theTask) {}
6. ~RunAction() {}
7. private:
8. std::weak_ptr<drama::Task> _theTask;
9. void ActionThread(const drama::sds::Id & /*obeyArg */) {
10. drama::Path server(_theTask,
11. "SERVER_TASK", "",
12. "./example_server");
13. server.GetPath(this);
14. // We will wait 5 seconds.
15. // ACTION2 waits 10 seconds, so we will timeout
16. if (server.ObeyWaitUntil(
17. drama::CreateFutureTimepoint(5.0),
18. this, "ACTION2"))
19. {
20. MessageUser("Subsidiary Action completed");
21. }
22. else
23. {
24. MessageUser(
25. "Timeout waiting for Subsidiary Action");
26. }
27. }
28. };

Note – when the timeout is triggered, the subsidiary action is “Orphaned”. Orphans are
explained below.

AAO/DRAMA2 Section 7.10 81 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

7.10 Orphaned Transactions
In DRAMA, if an action which has sent messages to other tasks completes before the
subsidiary transactions it started have themselves completed, the subsidiary transactions are
“Orphaned”. As suggested, they have lost their parents. There is now nowhere to deliver any
replies which come back in relation to these transactions.
In the DRAMA2 systems, transactions are orphaned if the message sending method (E.g.
drama::Path::Obey(), ObeyWaitUntil etc.) throws an exception or if the WaitUntil
version times out. As a result, the transaction is always orphaned if the action thread
completes.

7.10.1 Default Behavior
If a message is received in relation to a transaction that has been orphaned, DRAMA will, by
default, print information about it to stderr.18 For example, Example 7–8, above will
project something like this:
CLIENT:SERVER_TASK:ACTION2 invoked.
##CLIENT:Orphan Transaction Completed (DRAMA2 OrphanHandler).
CLIENT:Orphan Message = Reason for entry = informational message
received.
CLIENT:Task::OrphanHandler:see log file for details
##CLIENT:Orphan Transaction Completed (DRAMA2 OrphanHandler).
CLIENT:Orphan Message = Reason for entry = completion message received,
status = OK.
CLIENT:Orphaned completion of action "ACTION2" received from task
"SERVER_TASK".
CLIENT:Task::OrphanHandler:see log file for details

In this example, two messages have been received, an informational message
(MessageUser()/MsgOut()) and an action completion message. The MsgOut()
message is output (the first line) before a message about the orphan is output. For the later,
the action name and task are also output. In both cases, if the task is logging (section 11) then
more information will be written to the log file.

7.10.2 Changing the default behavior
An implementation may prefer that the task handle any orphans itself, rather then the default
of messages to stderr. This can be done by overriding the method
Task::OrphanHandler(const OrphanDetails &details) in your DRAMA
task implementation. The details argument provides access to information about the
transaction.
This method is invoked by the thread running drama::task::RunDrama() after
processing a DRAMA message but before blocking to wait for a message. The DRAMA lock
is taken so you can’t do anything that waits for a message.

18	Actually,	the	details	are	output	using	ERS	and	MsgOut().		By	default	ERS	messages	sent	outside	an	
action	are	output	to	stderr,	but	the	DitsUfacePutErsOut()	routine	can	change	what	happens.		
Similarly,	MsgOut()	messages	sent	outside	action	are	output	to	stdout,	but	
DitsUfacePutMsgOut()	can	change	that.	

82 of 135 Section 7.11 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

7.10.3 Actions taking over orphans
In traditional DRAMA tasks, an action may adopt orphans. This is done using the C routine
DitsTakeOrphans(). This might be done by say a POLL action that is normally started
by a GUI task. The POLL action can then ensure details are reported back to the user via the
GUI task.
Whilst this can be done in DRAMA2, it is not yet possible for a threaded action to take over
orphans. All dealing with such transactions must be handled using the traditional C interfaces
to DRAMA.
Additionally, there are some orphans for which this does not work. An action thread may
receive a series of messages in quick succession. In this case, the thread running
drama::task::RunDrama() may queue the handling of the events to the action thread
but not have an opportunity to yield the CPU to the action thread. When it finally does yield
to the action thread, one of the events might cause the action thread to terminate its wait,
before all events are processed. The result is that any already queued events for that action
become orphan transactions. Since this is occurring after the message has already been
delivered and processed by drama::task::RunDrama(), the events cannot be delivered
to another action. DRAMA2 tries had to avoid this case (it will try to yield the CPU after
each messages) but there is no certainty here at this point since it is dependent on the actual
OS thread scheduling policy.

7.10.4 Creating an orphan on demand.
There are cases where you may wish to create a transaction without a parent – sending an
message you have no interest in seeing the reply of. This is accomplished by using one of the
…WaitUntil() set of methods to send the message, having set the time point to some point
in the past. If you do this, the transaction will be orphaned immediately.

7.11 Parameter Set/Get Messages
You can send messages to set and get the values of parameters in other tasks. The methods
drama::Path::SetParam() and drama::Path::GetParam() are used.
Compared to say drama::Path::Obey(), these are a little simpler – if you are setting a
parameter where is no output argument, whist if you are getting the value, there is no input
argument. There is also a version of GetParam() that takes a list of parameters to return.
Example 7–9, below, shows them in action. At line 20, it is getting the value of the parameter
named “PARAM1”. This is then set to a new value at line 32. Then at line 35 the list version
of GetParam() is used to return the values of 3 parameters in one operation.

Example 7–9. Getting and setting parameters
1. class RunAction : public drama::thread::TAction {
2.
3. public:
4. RunAction(std::weak_ptr<drama::Task> theTask) :
5. TAction(theTask), _theTask(theTask) {}
6. ~RunAction() {}
7. private:
8. std::weak_ptr<drama::Task> _theTask;
9. void ActionThread(const drama::sds::Id & /*obeyArg */) {
10.
11. drama::Path server(_theTask,
12. "SERVER_TASK", "",
13. "./example_server");

AAO/DRAMA2 Section 7.12 83 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

14. server.GetPath(this);
15.
16. // Used to store results of GetParam messages
17. drama::sds::IdPtr val;
18.
19. // Get PARAM1 back and list it.
20. server.GetParam(this, "PARAM1", &val);
21. MessageUser("Get PARAM1 complete:");
22. val->List(SdsListToUser());
23.
24. // Grab the value of the PARAM1.
25. INT32 ival;
26. val->Get("PARAM1", &ival);
27.
28. // Set SERVER_TASK PARAM1.
29. drama::sds::Id newVal =
30. drama::sds::Id::CreateArgStruct();
31. newVal.Put("Argument1", ival+2);
32. server.SetParam(this, "PARAM1", newVal);
33. MessageUser("Set PARAM1 complete");
34. // Get of a list of parameters and list.
35. server.GetParam(this,
36. {"PARAM1", "PARAM2", "PARAM3"},
37. &val);
38.
39. MessageUser("Get list of parameters complete:");
40. val->List(SdsListToUser());
41.
42. }
43. };

7.12 Parameter Monitoring
Parameter Monitoring is one of DRAMA’s most powerful features. It allows a task to make
its state, as provided for in its parameters, available to other tasks which get updates as things
change in a very efficient way (no polling). For example, a server task running a motor may
maintain the position of the motor in a parameter. A GUI can “monitor” that parameter and
display the value to the user. The application code in the server task does not need to do
anything other then put the value into a parameter and tell DRAMA it has been updated. In
most cases the later is done by the function updating the parameter value19.
There can be several tasks monitoring the server’s parameters at the same time, again, the
server task application code does not need to do anything to enable this – in fact, it does not
normally know this is happening. It has made its state public via parameters and does not
care what the public does from that point.
When an update to a parameter value is made, its value is sent to all client tasks that have
expressed an interest in it (monitored it). Updates are only sent when updates occur – no
polling is needed by any task involved.
It is possible for the performance of server task to be impacted (as it is sending more
messages), but this has rarely been seen in practice. The most likely cause is updating
parameters at a very high rate – triggering a large number of messages to be sent. From a GUI

19	If	updating	a	complex	SDS	parameter	or	updating	parameter	values	by	pointer	–	you	will	probably	need	
to	tell	DRAMA	you	have	done	the	update.		See	4.6	for	more	information.	Also	the	C	function	
SdpUpdate().	

84 of 135 Section 7.12 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

point of view, 3 times a second is normally fast enough. Flooding a GUI with updates
triggering screen changes will likely cause the GUI performance to degrade well before the
server performance degrades.

7.12.1 Standard monitoring vs. forward monitoring
There are two types of monitoring. The first, which we are referring to here as “Standard
Monitor”, is where a task requesting a monitor wants the results sent to it. This is the most
common type of monitor.
The second type of monitor is the “Forward Monitor”. Whilst only used in some cases, it is a
powerful technique. The task requesting the monitor requests that changes are sent to a third
task, causing an action to be invoked in that task with the new parameter value as the action
argument.
Why would you want a forward monitor? They provide for efficient designs and avoid
complex dependency issues. For example, consider a system with three tasks. There is a
camera server task – it runs a camera and reads images from it. There is a standard image
display task. It knows how to display an image, but knows nothing about the camera server
itself. And there is a GUI task that controls both.
The effect I am looking for is that every image produced by the camera server is displayed on
the image display task for the user. I want to implement the camera server using a standard
DRAMA interface, so I can later replace that server with another for a different camera. And
I want the flexibility to replace the image display task with an alterative in the future.
Additionally, the camera server should still work even if the image display is not running. So
neither the camera server nor the image display task should have a dependency on each other.
To make the camera server work regardless of if the image display is connected, I can use a
parameter to store the result of each read of the camera. That way, any client can grab the last
image taken at will. And that naturally leads to parameter monitoring as the way to get
updates every time the camera is read.
With standard monitor, the design would be that the GUI monitors the parameter, and when it
gets an update, it forwards the parameter onto an action in the image display task. But the
GUI may have no interest in the image itself, in which case this double handling is annoying.
If large messages are involved (in this case, they are images so could be MBs in size) and
particularly if the tasks in question are distributed across multiple machines, this double
handling is particularly inefficient.
With “Forward Monitoring”, the GUI can tell the camera server task to forward the value of
the parameter directly to an action in the image display task. As long as the parameter value
format is accepted by the action in the image display, this will work. This design is much
neater. All the details are hidden by DRAMA and double handling is avoided.

7.12.2 The Monitor Messages.
The messages to start monitors are a DRAMA message type in the same way that Obey,
Kick, Set Parameter and Get Parameter messages are. But as these are handled internally to
DRAMA, there are limited possibilities. There are four sub-types and each has an associated
method in the drama::Path class.
Monitor Message

Sub-Type
drama::Path

member Description

AAO/DRAMA2 Section 7.12 85 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Monitor Message
Sub-Type

drama::Path
member Description

Start MonitorStart() Starts standard monitoring of all
parameters the names of which
are specified in the argument.
As noted below, avoid using this,
use a subclass of
thread::Monitor to run
these.

Forward MonitorForward() Various overloads of this method
allow specification of the task to
which the parameter is forwarded,
the action it is forwarded with and
the names of the parameters to be
monitored.

Cancel MonitorCancel() Cancel a monitor operation. This
causes the MonitorStart() or
MonitorForward() to
complete.

Add TBD

Add a specified parameter from
the set being monitored for a
particularly monitor message

Delete TBD Delete a specified parameter from
the set being monitored

The Add and Delete message types are not yet supported, as these have never in practice been
used. They would be easy to add if needed.
In reality, you should NOT used the MonitorStart() call. Instead you should use a sub-
class of drama::thread::Monitor. This class wraps up most of the work involved.
You create one of them with the list of parameters to monitor supplied to the contractor. You
then invoke the Monitor::Run() method on the object. The
drama::thread::Monitor::ParameterChanged() method will be invoked on
each parameter change. Your sub-class implements this method to respond to monitor events.
Some subclasses of drama::thread::Monitor have been implemented for the most
common cases – copying values into a tasks own parameters and implementing a basic
response vetted by type.

7.12.3 Monitor to Parameters
The drama::thread::MonitorToParam class is a sub-class thread::Monitor of
designed to copy the values of given sub-class parameters directly into parameters of the task
self. This is a concrete sub-class, so can be used as it, but in many cases you will want to
override the Transform() method. This method is invoked to allow you store the value in
a parameter of a different name from the name used in the task being monitored.
Example 7–10, below, shows this being done. Here the RUN action, from line 34, will
monitor parameters PARAM1, PARAM2 and PARAM3 in the example server task, with the

86 of 135 Section 7.12 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

monitor constructed at line 45 and run at line 52. During task initialization, equivalent
parameters were created in this task prefixed by “T_”.
A sub-class of drama::thread::MonitorToParam is used – line #9. This overrides
the Transform() method to prefix the name of the parameter being monitored to the name
of the parameter in our task. Transform() is invoked each time a monitor event happens –
each time the parameter changes. Note that you will probably want to “use” the constructor
from MonitorToParam, as per the using specification on line 11. That avoids
implementing it yourself.

Example 7–10. Monitoring to parameters
1. /*
2. * Create a class used to implement our monitors. This is a
3. * sub-class of MonitorToParam which will update parameters
4. * in our task with the values of monitored parameters. We
5. * subclass MonitorToParam so that we can transform the name
6. * of the parameter being monitored to the name of
7. * the parameter we want updated.
8. */
9. class MyMonitor : public drama::thread::MonitorToParam {
10. // Use the MonitorByType constructors.
11. using drama::thread::MonitorToParam::MonitorToParam;
12. // Override Transform.
13. std::string Transform(const std::string &in) override;
14. };
15. /*
16. * Invoked to transform the name of a parameter being
17. * monitored to the name of a parameter in this task
18. * that we want the value copied to.
19. */
20. std::string MyMonitor::Transform(const std::string &in)
21. {
22. // Just add the T_ prefix to the supplied name.
23. return std::string("T_") + in;
24. }
25.
26. class RunAction : public drama::thread::TAction {
27.
28. public:
29. RunAction(std::weak_ptr<drama::Task> theTask) :
30. TAction(theTask), _theTask(theTask) {}
31. ~RunAction() {}
32. private:
33. std::weak_ptr<drama::Task> _theTask;
34. void ActionThread(const drama::sds::Id & /*obeyArg */) {
35.
36. drama::Path server(_theTask,
37. "SERVER_TASK", "",
38. "./example_server");
39. server.GetPath(this);
40. /*
41. * Create a monitor object, specifying a list
42. * of parameters in the SERVER_TASK task to
43. * be monitored.
44. */
45. MyMonitor myMonitor(
46. _theTask,
47. { "PARAM1" , "PARAM2", "PARAM3" });
48.

AAO/DRAMA2 Section 7.12 87 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

49. try
50. {
51. MessageUser("About to run monitor");
52. myMonitor.Run(&server, this);
53. }
54. catch (drama::Exception &e)
55. {
56. /*
57. * If the above threw a DRAMA Run loop exit
58. * error, then this task was shutdown whilst
59. * we were running the monitor. In this case,
60. * we are not worried and allow the thread
61. * to close down without error messages.
62. * But for any other reason, we re-throw
63. * the exception.
64. */
65. if (e.dramaStatus() != DRAMA2__RUN_LOOP_EXIT)
66. {
67. throw e;
68. }
69. }
70.
71. }
72. };
73.
74. class ClientTask : public drama::Task {
75.
76. private:
77. RunAction RunActionObj;
78. drama::Parameter<int> param1;
79. drama::Parameter<std::string> param2;
80. drama::Parameter<float> param3;
81. public:
82. /**
83. * Constructor, from here we add actions
84. */
85. ClientTask(const std::string &taskName) :
86. drama::Task(taskName), RunActionObj(TaskPtr()),
87. param1(TaskPtr(), "T_PARAM1", 0),
88. param2(TaskPtr(), "T_PARAM2", ""),
89. param3(TaskPtr(), "T_PARAM3", 0.0) {
90.
91. Add("RUN", drama::MessageHandlerPtr(
92. &RunActionObj, drama::nodel()));
93. Add("EXIT", drama::SimpleExitAction);
94. }
95. ~ClientTask() {
96. }
97. };

Running Example 7–10 is a bit complicated. You need to use “ditscmd –g” commands to
check parameters and “ditscmd –s” to change parameter values. See the log below for an
example of working with this.

>> ./example_server&
[2] 9138
>> ./exam7_10 &
[4] 9169

88 of 135 Section 7.12 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

>>
>> ditscmd CLIENT RUN &
[5] 9171
>> DITSCMD_23d4:CLIENT:About to run monitor
>>
>> ditscmd -g SERVER_TASK _ALL_
DITSCMD_23dd:SdpStructure Struct
DITSCMD_23dd: LOG_LEVEL Char [5] "NONE"
DITSCMD_23dd: GITLOG_FILENAME Char [1] ""
DITSCMD_23dd: PARAM1 Int 2
DITSCMD_23dd: PARAM2 Char [13] "hi there c++"
DITSCMD_23dd: PARAM3 Float 33.3
DITSCMD_23dd: PARAM4 UInt 4
>> ditscmd -g CLIENT _ALL_
DITSCMD_23ec:SdpStructure Struct
DITSCMD_23ec: LOG_LEVEL Char [5] "NONE"
DITSCMD_23ec: GITLOG_FILENAME Char [1] ""
DITSCMD_23ec: T_PARAM1 Int 2
DITSCMD_23ec: T_PARAM2 Char [13] "hi there c++"
DITSCMD_23ec: T_PARAM3 Float 33.3
>> ditscmd -s SERVER_TASK PARAM1 22
>> ditscmd -s SERVER_TASK PARAM2 "does monitoring work"
>> ditscmd -s SERVER_TASK PARAM3 3333.3
>> ditscmd -g CLIENT _ALL_
DITSCMD_2431:SdpStructure Struct
DITSCMD_2431: LOG_LEVEL Char [5] "NONE"
DITSCMD_2431: GITLOG_FILENAME Char [1] ""
DITSCMD_2431: T_PARAM1 Int 22
DITSCMD_2431: T_PARAM2 Char [21] "does monitoring work"
DITSCMD_2431: T_PARAM3 Float 3333.3
>> ditscmd CLIENT EXIT

7.12.4 Monitor by Type
When monitoring, one of the first things often done is to break parameters being monitored
up via the parameter type. The drama::thread::MonitorByType sub-class of
thread::Monitor does this, providing separate ParamChanged() methods to be
invoked for each basic type. The sub-class can override these as required.
Example 7–11 below, is similar to Example 7–10 but is using MonitorByType. The
MyMonitor class overrides various of the ParamChanged() methods of
MonitorByType. After working through Example 7–10, I think the reader will find this
easy to understand. The example just outputs the changed parameter values to stderr.

Example 7–11. Monitoring by type
1. /*
2. * Create a class used to implement our monitors. This is a
3. * sub-class of MonitorToParam which will update parameters
4. * in our task with the values of monitored parameters. We
5. * subclass MonitorToParam so that we can transform the name
6. * of the parameter being monitored to the name of
7. * the parameter we want updated.
8. */
9. class MyMonitor : public drama::thread::MonitorByType {
10. // Use the MonitorByType constructors.
11. using drama::thread::MonitorByType::MonitorByType;
12. /*
13. * Each of these override methods in MonitorByType.

AAO/DRAMA2 Section 7.12 89 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

14. * Mark them as "override" to ensure we have
15. * the signature correct.
16. */
17.
18. /*
19. * Invoked when a signed integer parameter is changed.
20. */
21. void ParamChanged(const std::string &name,
22. long value) override;
23. /*
24. * Invoked when a string parameter is changed, also
25. * for any of int/unsigned int/real which we have
26. * not overriden, so in this case, real/unsigned int
27. * cases as well.
28. */
29. void ParamChanged(const std::string &name,
30. const std::string & value) override;
31. /*
32. * Invoked when some complex parameter (array of
33. * items or structured item) is changed.
34. */
35. void ParamChanged(const std::string &name,
36. const drama::sds::IdPtr &value)
37. override;
38.
39. };
40. /*
41. * Invoked when an integer parameter being monitored changed.
42. */
43. void MyMonitor::ParamChanged(const std::string &name,
44. long value)
45. {
46. std::cerr << "*** MyMonitor:ParamChanged (int) \""
47. << name
48. << "\" to \""
49. << value
50. << "\""
51. << std::endl;
52. }
53.
54. /*
55. * Invoked when a string parameter being monitored changed.
56. * Also invoked for any of int/unsigned/real which we don't
57. * explicitly support.
58. */
59. void MyMonitor::ParamChanged(
60. const std::string &name,
61. const std::string & value)
62. {
63.
64. std::cerr << "*** MyMonitor:ParamChanged (string) \""
65. << name
66. << "\" to \""
67. << value
68. << "\""
69. << std::endl;
70. }
71.
72. /*
73. * Invoked when a complex parameter changes.
74. */

90 of 135 Section 7.12 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

75. void MyMonitor::ParamChanged(
76. const std::string &name,
77. const drama::sds::IdPtr &value)
78. {
79. std::cerr << "*** MyMonitor:ParamChanged (complex) \""
80. << name
81. << "\""
82. << std::endl;
83.
84.
85. value->List(std::cerr);
86. }
87. class RunAction : public drama::thread::TAction {
88.
89. public:
90. RunAction(std::weak_ptr<drama::Task> theTask) :
91. TAction(theTask), _theTask(theTask) {}
92. ~RunAction() {}
93. private:
94. std::weak_ptr<drama::Task> _theTask;
95. void ActionThread(const drama::sds::Id & /*obeyArg */) {
96.
97. drama::Path server(_theTask,
98. "SERVER_TASK", "",
99. "./example_server");
100. server.GetPath(this);
101. /*
102. * Create a monitor object, specifying a list
103. * of parameters in the SERVER_TASK task to
104. * be monitored.
105. */
106. MyMonitor myMonitor(_theTask,
107. { "PARAM1" , "PARAM2",
108. "PARAM3", "PARAM4" ,
109. "STRUCT_PARAM" });
110.
111. try
112. {
113. MessageUser("About to run monitor");
114. myMonitor.Run(&server, this);
115. }
116. catch (drama::Exception &e)
117. {
118. /*
119. * If the above threw a DRAMA Run loop exit
120. * error, then this task was shutdown whilst
121. * we were running the monitor. In this case,
122. * we are not worried and allow the thread
123. * to close down without error messages.
124. * But for any other reason, we re-throw
125. * the exception.
126. */
127. if (e.dramaStatus() != DRAMA2__RUN_LOOP_EXIT)
128. {
129. throw e;
130. }
131. }
132.
133. }
134. };
135.

AAO/DRAMA2 Section 7.12 91 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

136. class ClientTask : public drama::Task {
137.
138. private:
139. RunAction RunActionObj;
140. public:
141. /**
142. * Constructor, from here we add actions
143. */
144. ClientTask(const std::string &taskName) :
145. drama::Task(taskName), RunActionObj(TaskPtr()) {
146.
147. Add("RUN", drama::MessageHandlerPtr(
148. &RunActionObj, drama::nodel()));
149. Add("EXIT", drama::SimpleExitAction);
150. }
151. ~ClientTask() {
152. }
153. };};

Below see an example of running Example 7–11.
>> ./example_server&
[2] 27148
>> ./exam7_11&
[4] 27149
>>
>> ditscmd CLIENT RUN &
[5] 27150
>> DITSCMD_6a0f:CLIENT:About to run monitor
*** MyMonitor:ParamChanged (int) "PARAM1" to "2"
*** MyMonitor:ParamChanged (string) "PARAM2" to "hi there c++"
*** MyMonitor:ParamChanged (string) "PARAM3" to "33.3"
*** MyMonitor:ParamChanged (string) "PARAM4" to "4"
*** MyMonitor:ParamChanged (complex) "STRUCT_PARAM"
STRUCT_PARAM Struct
 STRUCT_VALUE_1 Int 11
 STRUCT_VALUE_2 Int 21

>> ditscmd -s SERVER_TASK PARAM1 22
*** MyMonitor:ParamChanged (int) "PARAM1" to "22"
>> ditscmd -s SERVER_TASK PARAM2 "I am go"
*** MyMonitor:ParamChanged (string) "PARAM2" to "I am go"
>> ditscmd -s SERVER_TASK PARAM3 444.4
*** MyMonitor:ParamChanged (string) "PARAM3" to "444.4"
>> ditscmd -s SERVER_TASK STRUCT_PARAM.STRUCT_VALUE_1 343
*** MyMonitor:ParamChanged (complex) "STRUCT_PARAM"
STRUCT_PARAM Struct
 STRUCT_VALUE_1 Int 343
 STRUCT_VALUE_2 Int 21
>> ditscmd CLIENT EXIT
>> DITSCMD_6a0f:exit status:%DITS-F-TASKDISC, Task disconnected

[5] + exit 4 ditscmd CLIENT RUN
>>
[4] + done ./exam7_11

92 of 135 Section 7.13 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

7.12.5 Forward Monitors.
Implement these viaone of the drama::Path::MonitorForward() methods. The task
specified is the task too which the value of the parameter is to be sent, the action is the action
it will be sent as an argument too.

7.12.6 Cancelling Monitors
The drama::thread::Monitor class provides the Cancel() method to cancel a
monitor. Invoking this will cause a new thread to be created which sends the appropriate
message to cancel the monitor. The drama::thread::Monitor::Run() will then
return.
When invoked from a threaded action, drama::thread::Monitor::Run() will also
respond to DRAMA Kick messages. The default behavior is to cancel the monitor, but the
user can subclass the drama::thread::MonitorMessageHandler, overriding
KickReceived(), to perform as required.

7.13 Control Messages
The final message type is the Control message. These were implemented as a way of sending
messages to the DRAMA component of a task, rather then the application part. These are,
naturally, sent using drama::Path::Control(). They use of this method is exactly the
same as per Path::Obey(). As a result, non example is provided. The “-c” option to
“ditscmd” allows you to send control messages. The table below details the currently
supported control messages.

Name Argument Description
DEFAULT Option. Directory

Spec
If an argument is supplied, it is a
new default directory. Otherwise
the default directory is returned

MESSAGE Status Code The argument is a DRAMA Status
Code. Convert it to its string
representation. Allows an external
program to translate codes known
to the target task.

DEBUG Integer debug level Set the DRAMA Internal
debugging level. Set
$DITS_DIR/DitsSystem.h for
details of the codes.

DUMPPATHS None Dump details of known paths.
DUMPTRANSIDS None Dump details of outstanding

transactions
DUMPACTACTIVE None Dump details of active actions
DUMPACTALL None Dump details of all actions
DUMPMON None Dump details of running monitors
VERSIONS None Dump DRAMA, DITS and IMP

version numbers

AAO/DRAMA2 Section 7.14 93 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

LOGNOTE Some text Write the argument (a string) to the
log file, if there is one.

LOGFLUSH None Flush the log file (if supported by
the logger)

LOGINFO None Output details of the logger (if
supported by the system)

SDSLEAKCHK None Output details to help track SDS ID
leaks.

HELP None Output the list of messages.
PRINTENV Env var name Translate an environment variable.

If no argument, then output all.

There are, as yet, no DRAMA 2 specific messages. They may be added.

7.14 Multiple simultaneous messages from one action.
There is not much fun to be had if you can only send one simultaneous message from your
action. In traditional (C language) DRAMA an action have as many messages outstanding
simultaneously as resources allow. For example, the AAO’s 2dF Control task will
initialize/reset all of the 12 or so tasks it controls directly simultaneously. Since many of
these run on other machines, the initialization can run in parallel and the startup of the entire
system is limited only by the initialization time of the slowest thing to start up. But the 2dF
Control task must reschedule to handle replies for all of these and puts significant effort into
managing them so that it knows they are done and any errors are reported.
As used so far, DRAMA 2 messaging blocks the action thread whilst sending one message
and you cannot be simultaneously sending others. The approach used in DRAMA 2 to
support multiple outstanding messages is to use a thread for each message. The action code
must start a new thread for each message it wants to be sent simultaneously. Each thread can
block as required. The application code is responsible for joining the threads back into the
action thread itself.
Consider Example 7–11 above. In this example, you can kick the action running the monitor
to cancel the monitor. Support for this is implemented by the
drama::thread::MonitorByType class. In DRAMA, to cancel a monitor, you need
to send a MONTOR CANCEL message to the task being monitored, specifying an ID
returned when the monitor is started. So to do this, the action needs to have two messages
outstanding at the same time. The MonitorByType implements the cancel by creating a
thread that sends the MONITOR CANCEL messages.
A simple example of this approach is given by Example 7–12, below. This work was started
from Example 7–2. But instead of sending obey message (ACTION1) to the server task, we
are sending 4 of them simultaneously. We will send ACTION1, ACTION2, ACTION3 and
ACTION4.

First a bit of house keeping; some of these actions send trigger messages back, which we are
not interested in. So we sub-class drama::MessageEventHandler to create the class
TriggerIgnorer, and use an object of that class to handle messages and just ignore the
triggers. See lines 5 to 16

94 of 135 Section 7.14 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

We will create a child thread for each message we want to send, and then have the original
action thread wait on futures to be set when each child thread completes.
We can, in this simple example, use the same function to run each thread. This is the function
SendObey(), from line 19. The only thing you haven’t see before is the call to
drama::thread::BlockSignals(). This function will block all blockable signals
from being delivered to this thread. This is done because Unix signals do not work well with
Unit threads. We prefer that only the thread running the DRAMA loop receive any signals.
Otherwise, this we create the event handler object and send the obey. The thread completes
when the Obey has completed.
Back in the action thread itself, instead of sending the obey ourselves (as in Example 7–2) we
need to start a thread for each action we will send. The simplest approach is to use
std::async(), see line 55. This returns a std::future we can use to wait for the
thread to complete.
The most annoying thing about a std::future is that there is (as of C++14) no way of
waiting the first of a set of futures to complete. You can only wait on one at a time. So in the
wait code, lines 63 to 66, the example just waits on each in sequences. This works, but would
be annoying in some cases. Resolution left to the reader, if needed.
Note that if one the child threads throws an example, then this will be transferred to the action
thread at the corresponding std::future::get() operation.

Example 7–12. Sending multiple messages from one action thread

1. /*
2. * Implement our own event handler,
3. * which ignores trigger messages
4. */
5. class TriggerIgnorer : public drama::MessageEventHandler {
6. private:
7. std::weak_ptr<drama::Task> _theTask;
8. public:
9. TriggerIgnorer(std::weak_ptr<drama::Task> theTask) :
10. _theTask(theTask) {}
11. void TriggerReceived(
12. drama::thread::ProcessInfo /*messInfo*/,
13. StatusType /*status*/,
14. const drama::sds::IdPtr &/*arg*/) override {
15. }
16. };
17.
18. /* This is executed in a thread */
19. void SendObey(
20. std::weak_ptr<drama::Task> theTask,
21. drama::Path *path,
22. drama::thread::TMessHandler *action,
23. std::string obeyActionName)
24. {
25. drama::thread::BlockSignals();
26. TriggerIgnorer triggerIgnore(theTask);
27. path->Obey(action, obeyActionName,
28. drama::sds::Id::CreateNullItem(),
29. nullptr,
30. &triggerIgnore);
31. }
32.
33. class RunAction : public drama::thread::TAction {

AAO/DRAMA2 Section 7.14 95 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

34.
35. public:
36. RunAction(std::weak_ptr<drama::Task> theTask) :
37. TAction(theTask), _theTask(theTask) {}
38. ~RunAction() {}
39. private:
40. std::weak_ptr<drama::Task> _theTask;
41. void ActionThread(const drama::sds::Id & /*obeyArg */) {
42. drama::Path server(_theTask,
43. "SERVER_TASK", "",
44. "./example_server");
45.
46. const unsigned numActions = 4;
47. std::vector<std::future<void>> futures(numActions);
48.
49. server.GetPath(this);
50.
51. for (unsigned i = 0; i < numActions ; ++i)
52. {
53. std::string actName = "ACTION" +
54. std::to_string(i+1);
55. futures[i] = std::async(std::launch::async,
56. SendObey,
57. _theTask,
58. &server,
59. this,
60. actName);
61. }
62. MessageUser("Waiting for subsidiary actions");
63. for (unsigned i = 0; i < numActions ; ++i)
64. {
65. futures[i].get();
66. }
67. MessageUser("All actions complete");
68. }
69. };};

Earlier on, this section was discussing the implementation of some of the code behind
Example 7–11. This is a useful example as it demonstrates the sending messages from Kick
handlers, and you may actually want to re-implement such code to handle the kicks
differently (possibly using an argument to work out what you really need to do.
We will re-implement Example 7–11 to explicitly code the handling of the kick message to
cancel the monitor. Example 7–13 through to Example 7–16 are all from the one source file,
exam7_13. It is a relatively complex file, so we will just look at the significant bits. You can
look at the example source for the full details.
The first thing we need to do is to intercept the Kick of the RUN action when the Monitor is
running. We need a sub-class of drama::thread::MonitorMessageHandler,
which itself a sub-class of drama::MessageEventHandler. Example 7–13 shows the
new class declaration – MyMonitorMessageHandler. We implement the constructor so
we can grab some information we need and the KickReceived method.

Example 7–13. Monitor Kick Handler - MonitorMessageHandler
1. class MyMonitorMessageHandler :
2. public drama::thread::MonitorMessageHandler {
3. private :
4. // Keep information KickReceived will need.

96 of 135 Section 7.14 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

5. drama::thread::Monitor &_theMonitor;
6. drama::Path *_thePath;
7. drama::thread::TMessHandler *_action;
8.
9. public:
10. MyMonitorMessageHandler(
11. drama::thread::Monitor &theMon,
12. drama::Path *path,
13. drama::thread::TMessHandler *action) :
14.
15. drama::thread::MonitorMessageHandler(theMon),
16. _theMonitor(theMon),
17. _thePath(path),
18. _action(action) {}
19. bool KickReceived(drama::thread::ProcessInfo messInfo,
20. const drama::sds::IdPtr &arg) override;
21. };

In the ActionThread() method, we construct one of these objects and pass it to the
monitor Run() method. As per Example 7–14 below, lines 9 and 12.

Example 7–14 Monitor Kick Handler – Action Code.
1. void ActionThread(const drama::sds::Id & /*obeyArg */) {
2. …
3. try
4. {
5. MessageUser("About to run monitor");
6. /*
7. * Create my own message handler
8. */
9. MyMonitorMessageHandler messHandler(
10. myMonitor, &server, this);
11. canceling = false;
12. myMonitor.Run(&server, this, &messHandler);
13.
14. /*
15. * If we canceled, need to wait on the
16. * future to force the thread to join.
17. */
18. if (canceling)
19. {
20. MessageUser("Monitor was canceled");
21. cancelFuture.get();
22. }
23.
24. }
25. catch (drama::Exception &e)

The MyMonitorMessageHandler::KickReceived method is the next thing to consider, as
shown in Example 7–15. It is actually very simple. First it checks that the monitor is actually
running using (IsRunning() true and GetMonitorId() >= 0), Note that
IsRunning() might be true and (GetMonitorId() < 0) if the operation is just
starting. Unfortunately there is no way of cancelling the monitor in this state, you need to
wait until it is started. Your application might need to consider that case in more detail.

AAO/DRAMA2 Section 7.14 97 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

It also does not want to send a second monitor cancel operation, so the “cancelling” flag
is used to check that. If we were to send a second cancel, it would likely fail and we would
have to manage multiple threads sending cancels – so in this example, we don’t bother.
Then we just start the thread, running the SendCancel() function. The future returned by
std::async() is stored.

Example 7–15. Monitor Kick Handler – processing the kick.
1. bool MyMonitorMessageHandler::KickReceived(
2. drama::thread::ProcessInfo /*messInfo*/,
3. const drama::sds::IdPtr & /*arg*/)
4. {
5. // Confirm the monitor is running.
6. if ((_theMonitor.IsRunning())&&
7. (_theMonitor.GetMonitorId() >= 0)&&
8. (!canceling))
9. {
10. /*
11. * Indicate we are canceling monitoring.
12. */
13.
14. canceling = true;
15. /*
16. * Start the thread
17. */
18. cancelFuture = std::async(std::launch::async,
19. SendCancel,_thePath, _action,
20. _theMonitor.GetMonitorId());
21.
22. }
23. /*
24. * Returning true says the wait of the
25. * message to complete should continue.
26. */
27. return true;
28.
29. }

The implementation of SendCancel(), Example 7–16, is very similar to SendObey() in
Example 7–12, above. It is simplified by not having to worry about handling trigger
messages.

Example 7–16 Monitor Kick Handler –sending the Monitor Kick.
1. void SendCancel(drama::Path *path,
2. drama::thread::TMessHandler *action,
3. int monitorId)
4. {
5. // First block all signals.
6. drama::thread::BlockSignals();
7. path->MonitorCancel(action, monitorId);
8. // At this point, the cancel message has completed.
9. }

Finally, back in the ActionThread() method in Example 7–14, we must deal with
having sent a cancel. After the myMonitor.Run() method returns, we must check if we
were being cancelled and if true, do a get() on the future.

98 of 135 Section 7.15 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Note that correct exception handling potentially complicated, as myMonitor.Run() and
the get() may both throw exceptions. If myMonitor.Run() throws an exception and
you are canceling, you will probably want to do the get() on the future (to ensure resources
are tided up), ignore any exception it would throw and re-throw what myMonitor.Run()
threw. But if myMonitor.Run() returned without an exception and the get() throws,
you probably want that to be thrown by ActionThread(). This implementation is left for
the reader.

7.15 Sequencing issues.
The DRAMA2 implementation, due to its use of threads, experiences sequencing issues not
seen in traditional DRAMA tasks. In particular, the DRAMA message reading loop may read
a number of messages before the threads that must be woken are run.
Consider a task named CLIENT with an action named RUN. Presume the RUN action will
send message C1 to the user, and obey the action WORK in the task SERVER. It might get a
trigger message from WORK in SERVER, at which point it sends message C2 to the user.
When WORK in SERVER completes, it sends Message C3 to the user.
Then presume the SERVER task WORK action has a simple sequence. It sends message S1,
sends a trigger message and then sends message S2 before completing.
The order of messages for a traditional C implementation of CLIENT is always:

• Message C1 (CLIENT RUN action starting)

• Message S1 (SERVER WORK action starting)

• Message C2 (CLIENT response to Trigger)

• Message S2 (SERVER WORK action about to end)

• Message C3 (CLIENT RUN action complete)
But if you implement CLIENT with DRAMA2, you may, in some cases get the following
sequence:

• Message C1 (CLIENT RUN action starting)

• Message S1 (SERVER WORK action starting)

• Message S2 (SERVER WORK action about to end)

• Message C2 (CLIENT response to Trigger)

• Message C3 (CLIENT RUN action complete)
That is, the CLIENT task appears to get the Trigger message after the SERVER action has
completed.
This happens because messages to users sent from a subsidiary action are not handled by the
action thread. They are dealt with by DRAMA without the action thread being invoked. In
the above example, message S1 was received from the client and sent immediately to the
user. The trigger message was received, but used to schedule a wake-up of the RUN action
thread. But before this could awaken, the S2 message was received, processed by DRAMA
and sent straight to the user. Only then, did the action thread wake up, process the trigger
message and send message C2.
In traditional DRAMA, the trigger message would have been processed before DRAMA
started looking for another message to process, and hence the order is always right.

AAO/DRAMA2 Section 7.15 99 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

This effect also impacts ERS messages – they can also get to the user out of sequence.
DRAMA does have techniques that would allow this to be avoided20, but this does removes a
significant DRAMA optimization. If this is an issue, please let the author know and the
implementation will be adjusted.

20	Future	implementation	note	–	DitsInterested()	can	be	used,	transferring	the	message	to	the	
thread.		The	MessageEventHandler	object	could	then	output	them.	

100 of 135 Section 7.15 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

8 GIT Task Implementation

It is an AAO Software Standard that all Instrument tasks must obey the “Generic Instrument
Task” (GIT) specification. Such a task provides a standard base action interface and a
standard base set of parameters. The DRAMA Document “GIT_SPEC_9” defines this
specification
The benefit of the GIT specification is that it makes it easy to write Control Task that can use
standard code to Load, Initialise, Reset, Monitor and Shutdown Instrument tasks.
“GIT_SPEC_9” also describes a library that is used to assist in implement GIT tasks. Whilst
written in C, it provided an O-O approach. You inherited GIT to get the basic interface. You
might then inherit one or more other interfaces that may just add new features, or may
override features in GIT. Finally, you add you own interfaces, which may again override GIT
or other inherited features, or just simply add your own.
DRAMA2 re-implements the GIT interface using DRAMA2, via the “drama::git::Task” class.
To implement a GIT task, sub-class this, adding your own actions and parameters.
The simplest possible GIT task implementation is shown in Example 7–1. Basically, you can
just run the drama::git::Task constructor with CreateRunDramaTask. NOTE –
unlike all previous examples, just including “drama.hh” is not sufficient, you must also
include “drama/gittask.hh” to get access to the features. This is to avoid non-GIT
drama tasks facing a higher compilation overhead.

Example 8–1. A Basic GIT Task.
10. #include "drama.hh"
11. #include "drama/gittask.hh"
12.
13. const char *taskVer="1.0";
14. const char *taskDate="21-03-2015";
15. /**
16. * Create the simplest GIT task.
17. */
18. int main()
19. {
20. drama::CreateRunDramaTask<drama::git::Task>(
21. "EXAMPLE8_1", /* Task name */
22. "EXAMPLE", /* Log sys name */
23. taskVer, /* Task version */
24. taskDate, /* Task date */
25. "D2 Example 8.1 - A Basic GIT Task");
26.
27.
28. return 0;
29. }

 And below shows the results of playing with this task using ditscmd. In particular note
how the various arguments ended up in parameters. A control task can use these standard
parameter values to work out what it is controlling.
>> ./exam8_1&
[3] 6529
>> ditscmd EXAMPLE8_1 SIMULATE_LEVEL FULL
DITSCMD_19a1:EXAMPLE8_1:Simulation has been set to FULL

AAO/DRAMA2 Section 8.1 101 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

>> ditscmd EXAMPLE8_1 INITIALISE
DITSCMD_19a2:EXAMPLE8_1:Opened log file
"/home/tjf/odc_temp/logs/EXAMPLE8_1-2015-03-10.00.log"
DITSCMD_19a2:EXAMPLE8_1:Initial logging levels set to ERRORS,INST,MSG
DITSCMD_19a2:EXAMPLE8_1:DRAMA Generic Instrument Task Initialised

>> ditscmd EXAMPLE8_1 RESET
DITSCMD_19a4:EXAMPLE8_1:Opened log file
"/home/tjf/odc_temp/logs/EXAMPLE8_1-2015-03-10.01.log"
DITSCMD_19a4:EXAMPLE8_1:Initial logging levels set to ERRORS,INST,MSG
DITSCMD_19a4:EXAMPLE8_1:DRAMA Generic Instrument Task Reset

>> ditscmd -g EXAMPLE8_1 _ALL_
DITSCMD_19cb:SdpStructure Struct
DITSCMD_19cb: LOG_LEVEL Char [16] "ERRORS,INST,MSG"
DITSCMD_19cb: GITLOG_FILENAME Char [53]
"/home/tjf/odc_temp/logs/EXAMPLE8_1-2015-03-10.02.log"
DITSCMD_19cb: SIMULATE_LEVEL Char [5] "FULL"
DITSCMD_19cb: TIME_BASE Float 1
DITSCMD_19cb: ENQ_DEV_TYPE Char [4] "IDT"
DITSCMD_19cb: ENQ_DEV_DESCR Char [34] "D2 Example 8.1 - A Basic
GIT Task"
DITSCMD_19cb: ENQ_VER_NUM Char [4] "1.0"
DITSCMD_19cb: ENQ_VER_DATE Char [11] "21-03-2015"
DITSCMD_19cb: ENQ_DEV_NUMITEM Int 0
DITSCMD_19cb: INITIALISED Int 1

DITSCMD_19cb: POLL_PARAMETER Float 2
>> ditscmd EXAMPLE8_1 EXIT
[3] + done ./exam8_1

8.1 Overriding GIT Action Implementations.
The example above is not very useful. In most cases, you will want to add your own actions
and override GIT actions to implement the requirements of your task. For example, very few
GIT tasks use the default INITIALISE action. They will implement their own to initialize
the hardware or other internal state.
For both overriding GIT actions and adding your own, the process is the same and is exactly
the process we have taken before to add actions. Just add the new actions from your task
constructor.
Example 8–2, below, shows this being done. In this example, the new INTIALISE action is
implemented using an action thread, line 1. The content of the ActionThread() method
(line 10) shows the jobs done by the default GIT INITIAILISE action, opening the log file
(line 13 – logging is covered in section 11) and setting the INITIALISED parameter to 1
(line 16). Whilst you should do those to jobs, the rest of the contents are up to the author and
the job required. The INITIALISED parameter is used by control tasks that find a task
already running when it tried to connect. If it is set true, the control task may then not bother
Initialising/Resetting the task.

Example 8–2. Overriding GIT Action Implementations
1. class InitialiseAction : public drama::thread::TAction {
2. private:
3. std::weak_ptr<drama::Task> _theTask;
4. public:
5. InitialiseAction(std::weak_ptr<drama::Task> theTask) :

102 of 135 Section 8.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

6. TAction(theTask), _theTask(theTask) {}
7.
8. void ActionThread(const drama::sds::Id & /*obeyArg */)
9. override {
10. // Access GitTask.
11. auto myTask(GetTask()->TaskPtrAs<drama::git::Task>());
12. // Open log file.
13. myTask->Logger().Open(myTask->GetLogSysName());
14. // Access par sys, set initiailsed.
15. drama::ParSys parSys(_theTask);
16. parSys.Put("INITIALISED", 1);
17. MessageUser(
18. "EXAMPLE 8.2 GIT Task Initialised from a thread.");
19. }
20. ~InitialiseAction() {}
21. };
22.
23. const char *taskVer="1.0";
24. const char *taskDate="22-03-2015";
25.
26. class MyGitTask : public drama::git::Task {
27. private:
28. InitialiseAction InitActObj;
29. public:
30. MyGitTask(const std::string &taskName) :
31. drama::git::Task(
32. taskName,
33. "EXAMPLE", /* Log sys name */
34. taskVer, /* Task version */
35. taskDate, /* Task date */
36. "D2 Example 8.2 - GIT Task with own Initialise"),
37. InitActObj(TaskPtr()) {
38.
39. Add("INITIALISE", drama::MessageHandlerPtr(
40. &InitActObj, drama::nodel()));
41. }
42. };
43. /**
44. */
45. int main()
46. {
47. drama::CreateRunDramaTask<MyGitTask>("EXAMPLE8_2");
48. return 0;
49. }

You should refer to the DRAMA Document “GIT_SPEC_9” for more details on what GIT
action should do.

8.2 Accessing Simulation.
The drama::git::Task class provides various methods which allow you to access the
simulation of the task. An argument to the constructor allows you to set which simulation
levels are acceptable. Use git::Task::IsSimulating() for a logical test of
simulation and GetSimulationLevel() for the actual simulation level.
GetSimuationTimeBase() can be used to get the simulation time base (intended to be a
multiplier of the speed of the simulation compared to the real hardware). Note that the values
are read from the parameters on demand.

8.3 GIT POLL Action

AAO/DRAMA2 Section 8.3 103 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

The GIT Specification requires a POLL action. The POLL action is defined as an action task
is started by the Loader/Control task after it has finished initialization a GIT Task. The
POLL action will run until Kicked or until it is otherwise stopped by the task itself (say as
part of a RESET/EXIT action). The POLL action provides a way for a task to control things
that are not done in direct response to actions (e.g. polling hardware status to update
parameters).
The default GIT POLL Action will take over all orphaned transactions (except those which
cannot be dealt with using the traditional DRAMA technique – see section 7.10). It will
report messages to the user for all such events.
Whilst a sub-class could override the implementation of POLL itself, there are a number of
callbacks for the most common cases which avoids the sub-class having to deal with the
complexity of the general case. These can be overridden independently as required. See the
table below:

Method Description
bool PollObeyOverride(
MessageHandler *)

Invoked on all POLL messages. If it returns
false, then the default behavior will then
occur. If it returns true, it is presumed the
message has been handled and poll is
rescheduled.
This method allows a sub-class to override
any particular messages it desires, whilst
other messages have the default behavior.

The default implementation returns false.
bool PollKick(MessageHandler
*)

Invoked to handle kick messages. Returns
true if the POLL action should complete,
false if it should reschedule according to
the POLL_PARAMETER value. Note –
control tasks would expect a POLL action to
complete when it receives a kick.
Control tasks expect that a POLL action
completes when kicked. You should change
this behavior only based on arguments to the
kick, since the standard control tasks don't set
any argument.
This method is normally used to implement
some tidying up in response to the kick of
POLL, before the action exits.

void PollSignalEvent(
MessageHandler *)

This method is invoked if the POLL action
receives a signal event, but only if
PollObeyOverride() returned false.
Signal events are one of the most common
events for poll handlers to be interested in, so
this handler allows a sub-class to override the

104 of 135 Section 8.4 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Method Description
behaviour without having to do all the work
needed if it were to

 use PollObeyOverride().

void PollReschduleEvent(
MessageHandler *)

This method is invoked if the POLL action
receives a reschedule event, but only if
PollObeyOverride() returned false.
Reschedule events are one of the most
common events for poll handlers to be
interested in, so this handler allows a sub-
class to override the behaviour without
having to do all the work needed if it were to

 use PollObeyOverride().

It must be noted that implementing the above methods won’t allow you to send messages
from POLL, since the deault POLL action is not threaded. IF you need to send messages from
POLL you will need to reimplement it from scratch.

8.4 GIT Path.
The job of the GIT specification is to make writing control tasks easier by providing a
consistent interface. The drama::git::Path class helps implement control tasks - it
takes advantage of the consistent interface provided by tasks obeying the GIT specification to
provide an easy way to load and run GIT tasks.
drama::git::Path is a sub-class of drama::Path, so all the features of that area also
available. The extra features from a control-task viewpoint are methods which wrap up the
standard functionality of GIT tasks in a convent manner.

8.4.1 Initialise Method
The drama::git::Path::Initialise() method wraps up the process of loading a
task, setting the simulation level and Initialising/Resetting the task.
Before executing this, the simulation level and reset type should be set. Defaults are no
simulation and a reset type of “FULL”. Details on how to do this are below (section 8.4.6).

The task is loaded if it is not already running. The simulation level is set and details of the
task are fetched from the standard parameters.
If the task was loaded or if it was already running and the INITIALISED parameter has the
value zero, then the task will be send an INITIALISE action.

If the task was already running and the INITIALISED parameter was set to a non-zero
value, then the reset mode is considered. If the reset mode is “RECOVER”, then a RESET
FULL is done only if the task is in a failed state. Otherwise the requested RESET command
is sent with the specified argument. Thus if the reset mode is “RECOVER”, tasks will only be
reset if they have failed.
Initialise() blocks until the operation is complete, so you need to execute this in a
thread in the normal way.

AAO/DRAMA2 Section 8.4 105 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

8.4.2 Exit Method
The drama::git::Path::Exit() method will send the EXIT action to the task. It also
does some internal accounting around doing this, and sets the object state to failed.
Exit() blocks until the operation is complete, so you need to execute this in a thread in the
normal way.

8.4.3 Poll Method
The drama::git::Path::Poll() sends the POLL action to the task.

If POLL fails, it will be restarted, up to the number of attempts set by
Path::SetPollMaxAttempts(), except that if it is clear the task has died or we are
canceling polling, then it is not restarted.
If the POLL action is rejected due to it already being active, then it will be cancelled and
restarted by this task. This feature allows our task to take over polling that was started
somewhere else.
Poll() blocks until the POLL action is complete, so you need to execute this in a thread in
the normal way.

8.4.4 PollCancel Method
The drama::git::Path::PollCancel() method will kick the POLL action in the
task, and ensure that the Poll() method does not restart it.

PollCancel() blocks until the kick is complete, so you need to execute this in a thread in
the normal way. The order in which Poll() and PollCancel() complete is undefined.

8.4.5 Report Method
The drama::git::Path::Report() method outputs to the user (via
MessageUser()), some information on the status of the path.

8.4.6 Other Methods.
The drama::git::Path::SetPollMaxAttempts() method sets the number of
times the class will attempt to restart polling if it fails. The default is 5.
The drama::git::Path::SetSimulation() method sets the simulation details to be
sent to the task as part of Initiailse(). The default is “NONE”.

The drama::git::Path::SetResetMode() method sets the type of reset operation if
a task is reset (rather then initialized) when the Initialise() method is next invoked.
The default is a “FULL” reset.

All the above methods in this section should be invoked before Initialise() method,
since they impact its behavior.
The drama::git::Path::SetFailed() method should be invoked after a (subclass)
operation fails in such a way that the task should be reset to recover.

106 of 135 Section 8.4 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

8.4.7 Example Usage
The example source file exam8_3.cpp demonstrates the use of this class. It runs the
programs from Example 8–1 and Example 8–2, implementing the actions INITIALISE,
POLL, POLLKICK, REPORT and EXIT, which exercise each of the core features in
drama::git::Path. The core idea it demonstrates is having some set of GIT tasks under
control and operating on each of them in parallel using simple code.
We won’t display exam8_3.cpp here, as it is a bit long with the significant points actually
coming from the structure as a whole. Please refer to the source code itself.

8.4.8 Sub classing git::Path
A typical use of a drama::git::Path would be in a control task like the 2dF control
task21. This task controls a large set of DRAMA tasks, most of which are GIT tasks.
Such a control task sets up a dynamic list/vector etc. of tasks to be controlled. If these are all
GIT tasks, then it could use git::Path to consistently and, in parallel, load, initialise/reset,
poll and shutdown the tasks.
But many of these tasks have specific functionality the 2dF control task must operate, in
addition to their GIT functionality. So for each, the control task provides a sub-class which
accesses the specific functionality. This is standard C++ fair.
The more interesting case is where the tasks to be controlled actually don’t obey the GIT
specification. In the 2dF control task case, there are various “display” tasks that are not GIT
tasks. But the control task still wants to control them in a consistent manner.
The approach in these cases is that the core functionality of drama::git::Path is
provided by a bunch of simple method which can be overridden. For example, there is a
SendInitialise() method which actually sends the INITIALISE action to the task
being control. If the task being controlled does not support the standard GIT INITIALISE
action, then a sub-class of Path should override SendInitialise() to do the appropriate
thing.
The methods you might want to consider overriding in these cases are given in the table
below.

Method Description Default Behavior
DoGetPath() Loads a task and gets

a path to it.
Invokes
drama::Path::GetPath().

SendSimLevel() Sends the
SIMULATE_LEVEL
action to the task.

Invokes
drama::Path::Obey() with
action name
SIMULATE_LEVEL and the
simLevel and timeBase
arguments.

SendInitiailse() Initialises the task. Invokes
drama::Path::Obey() with

21	The	2dF	control	task	does	not	use	drama::git::Path,	it	predates	it	by	20	years.		But	the	technique	
described	is	used	in	the	2dF	control	task,	implemented	using	the	older	DRAMA	interfaces.	

AAO/DRAMA2 Section 8.4 107 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Method Description Default Behavior
action name INITIALISE

SendReset() Resets the task. Invokes
drama::Path::Obey() with
action name RESET and the reset
mode argument value.

GetVerInfo() Fetches the values of
various parameters.

Invokes
drama::Path::Get() for
the parameters ENQ_VER_NUM,
ENQ_VER_DATE,
ENV_DEV_DESCR,
ENQ_DEV_TYPE and
INITIALISED, filling out the
relevant member variables with
their values.

SendExit() Exits the task. Invokes
drama::Path::Obey() with
action name EXIT

Poll() Runs polling in the
task.

Rather complicated, as needs to
restart polling in some cases and
handle poll being cancelled. The
underlying message is
drama::Path::Obey() with
action name POLL

PollCancel() Cancels polling. Sets
_pollCancelling
variable to true.

Invokes
drama::Path::Kick() with
action name.

Report() Reports on the status
of the object.

Outputs details from the
parameters (GetVerInfo())
before invoking
drama::Path::Report().

It would be unusual to override Initialise() in a sub-class – there is a lost of
functionality to be re-implemented.
Note that currently various class variables are available to sub-classes. Their use is described
in the documentation. The intention is to replace direct access to these by appropriate
methods, but it is unclear at the moment what interfaces are required.

108 of 135 Section 9.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

9 Bulk Data

DRAMA provides a “Bulk Data” technique that allows you to send extremely large amounts
of data using DRAMA. The size is only limited by the virtual memory limitations of the
machines involved. First I shall explain the underlying problem and basic approaches before
detailing how you use these techniques in DRAMA2.
When using the normal DRAMA message sending approaches, DRAMA writes the message
header directly into the receiving task's buffers. This is very efficient for messages without
argument structures. But, any argument structure you supply via a SDS id is exported from
SDS into the buffer. This means that you must first put the data into an SDS item and then
have DRAMA copy it into the buffer. As long as you don’t need to keep your argument
around after your action entry – receiving is efficient, you can access the SDS argument
directly from the buffer (but this doesn’t work for actions implemented as a thread – there it is
copied). For large amounts of Data, say image arrays, this is an inefficient approach.
There are other problems. You are required to define the size of the largest message to be sent
when you set up the path between two tasks. Also it is possible you need to read data from
something like a frame buffer that can't be part of the DRAMA message buffers. The
DRAMA “Bulk Data” feature solves all of these problems and works well with DRAMA 2
threaded actions.
The feature allows you to send very large amounts of data by specifying shared memory
segments containing the data. For local transfers, this means no data is actually transferred,
other then a small notification message sent to the target task. For network transfers, only
one area of memory is required on each machine. The actual limit is determined by machine
virtual memory restrictions. Bulk Data techniques may place extra requirements on the
receiving task, depending on the particular example.

9.1 Sending Bulk Data
DRAMA uses the bulk data features of the underlying IMP system and you are referred to the
IMP manual for implementation details. You don't actually call any IMP routines directly.
Some DRAMA message operations can be replaced by "Send Bulk Data" equivalents. In
each case, the basic procedure is the same. You first define an area of shared memory. You
then call the appropriate message sending routine specifying most of the normal arguments
for the non-bulk routine and the shared memory segment details. You get notifications about
the progress in sending/reading the bulk data, allowing the sender to know when it release or
reuse the memory segment.
The bulk data segment can contain anything you want, but if it contains an SDS structure, the
receiving task need not know anything about it being bulk data – it is a transparent operation
to the receiver of a bulk data message containing an SDS structure, unless it explicitly looks
for bulk data arguments.

9.1.1 Creating a Bulk Data shared memory segment
The class drama::BulkData is used to create a shared memory segment. This type has
three constructors – the default constructor, the main constructor and an additional
constructor normally only used by DRAMA 2 itself. The default constructor creates an item
only suitable as the target for move operations. The rest of this considers the main
constructor which generates a shared memory segment.

AAO/DRAMA2 Section 9.1 109 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Such a shared memory segment has a type, indicated by the “Type” argument, using the
enum drama::ShareType.

If Type is set to ShareType::Create, then this class's main constructor creates a
temporary shared memory section of the size specified in some suitable form for the system it
is running on. The caller has no control over the details of the shared memory section.
In this case, the Name, Key and Address arguments are all ignored. A new shared memory
section will be created and mapped into the tasks virtual address space.
Under VxWorks: The mapped section is just a section of memory, starting at a specified
address. Type should be ShareType::Global. Name should be an empty string, and Key
is ignored. If Create is true, Address is ignored, and a suitably sized area of memory is
allocated. If Create is passed as false, then Address should contain the address of the
memory section in question. Under VxWorks, this is what is generated by
ShareType::Default.

UNIX: The mapped section can be created as System V shared memory, in which case Type
should be ShareType::SHMem, or as a file accessed through mmap(), in which case Type
should be ShareType::MMap. If Type is ShareType::SHMem, Key specifies the identifier
for the shared memory and Name should be an empty string. If Type is
ShareType::MMap, Name should be the full name of the file, and Key is ignored.
Address is ignored in both cases. On UNIX, one of these types will be what is provided by
ShareType::Default.

The drama::BulkData::Data() method provides access to the raw data. This is a
template method, allowing you to specify the type of object, which must be a POD type.
There are move assignment and move constructor methods.
The sub-class drama::BulkDataSds is provided to support SDS structures within Bulk
Data. Otherwise very similar, the main difference is that the constructor allows the size of the
segment to be determined by the size an SDS structure would be if exported, and then exports
the SDS structure into the segment. The important point here is that when you create an SDS
item, the memory is not generated until required – the SDS item is not “defined” until needed.
So you can create an SDS structure that represents a very large area of memory, but if you
have not written data to it, it uses little memory. You provide such a structure to the
constructor as the “Template” of the SDS item. The drama::BulkDataSds constructor
uses this template to determine the required size and then exports the SDS item into the bulk
data memory segment. The drama::BulkDataSds class is also a sub-class of
drama::sds::Id.

9.1.2 Sending a Bulk Data trigger message
Bulk Data trigger messages can be sent using the
drama::MessageHandler::SendBulkTrigger() method. A version is provided
which works with drama::BulkData items, another works with
drama::BulkDataSds items.

The main difference between a bulk data trigger message and a normal trigger message (other
then the bulk data argument) is that the operation is not completed immediately from the
senders viewpoint. In a normal trigger, once the SendTrigger() method returns, you are
free to delete or reuse the SDS argument and complete the action. For a bulk data message,

110 of 135 Section 9.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

you are not free to delete or reuse the argument until notified, and your action must
reschedule to wait for the notifications.
Two relevant notification messages are possible. You may get a
EntryÇode::BulkTransferred notification. This is used to tell your task the progress
of the receiving task in processing your message. In some cases, it may allow your task to
start updating some of the memory. Your task can use
drama::MessageHandler::GetEntry().GetBulkInfo() to get details on the
transfer progress. This notification is optional, it is only sent if the receiving task reports it
progress in using the data to the sender.
The second notification is sent when the receiving task is finished with the bulk data memory
segment. This is the EntryÇode::BulkDone notification. After this has been received,
you task is free to reuse or delete the memory segment.
The NotifyBytes argument, if non-zero, indicates that the initiating action should be
notified every time that number of bytes is transferred. This is a hint only to the task
receiving the message, and may be ignored. It is these notifications that trigger the
EntryÇode::BulkTransferred notifications.

Example 9–1 is an example of sending a bulk data trigger message. The Action TEST in this
task will do this. The Action implementation starts from line #20. At lines 22 to 34, a
template SDS structure is created. In this case, structure containing an item named
“BYTE_ARRAY”, which is a 1024 x 512 array of bytes. This is used to create the shared
memory segment at line 37. We are dynamically allocating the object in the static variable so
that we can keep it about when the method returns (you should probably used a
std::shared_ptr<> rather then just a pointer).

We then access the data within the shared memory and fill it with some values. Lines 40 to
50. As an aside here, we are using the drama::sds::DataPointer class to provide
access to the raw data in the SDS structure.
Then at line 54, we send the trigger message. We need to pass a transaction DRAMA ID
argument address to this method. A transaction ID allows us to relate a message sent to
replies received. In this case, we don’t need to use it, but other examples may do so. The
transaction ID association with the resultant notifications could be obtained using
GetEntry().EntryTransId() and compared to what was returned here.

Finally the action provides a new reschedule handler (line 57) and reschedules to await the
reply. Real code may reschedule with a timeout rather then just a sleep.

Example 9–1. Sending a bulk data trigger message
1. static drama::BulkDataSds *bigDataSds = nullptr;
2.
3. // Handler for bulk data trigger reschedule messages.
4. class MyRescheduleHandler : public drama::MessageHandler {
5. public:
6. MyRescheduleHandler() {}
7. ~MyRescheduleHandler() {}
8. drama::Request MessageReceived() override;
9. };
10.
11. // Action definition.
12. class TestBulkAction : public drama::MessageHandler {
13. public:
14. TestBulkAction() {}

AAO/DRAMA2 Section 9.1 111 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

15. ~TestBulkAction() {}
16. private:
17. MyRescheduleHandler _reschedHand;
18.
19.
20. drama::Request MessageReceived() override {
21.
22. // Toplevel of template SDS items.
23. drama::sds::Id myTemplate =
24. drama::sds::Id::CreateArgStruct();
25.
26. // Dimensions of template SDS data array.
27. std::vector<unsigned long> dims(2);
28. dims[0] = 1024;
29. dims[1] = 512;
30.
31. // Create array of bytes.
32. drama::sds::Id childArray =
33. myTemplate.CreateChildArray("BYTE_ARRAY",
34. SDS_BYTE, dims);
35.
36. // Create bulk data item.
37. bigDataSds = new drama::BulkDataSds(GetTask(),
38. myTemplate);
39.
40. // Find the child array in the bulk data item .
41. childArray = bigDataSds->Find("BYTE_ARRAY");
42. // Fill the child data array with something
43. drama::sds::DataPointer<char[]> dataArray(childArray);
44. char val = 0;
45. for (auto &item : dataArray)
46. {
47. val = val % 128;
48. item = val;
49. val ++;
50. }
51.
52. // Send trigger
53. DitsTransIdType transid = nullptr;
54. SendBulkTrigger(bigDataSds, &transid);
55.
56. // Reschedule.
57. PutObeyHandler(
58. drama::MessageHandlerPtr(&_reschedHand,
59. drama::nodel()));
60. return drama::RequestCode::Sleep;
61.
62. }
63. };
64.
65. // Handle reschedule messages for bulk data trigger transfer.
66. drama::Request MyRescheduleHandler:: MessageReceived()
67. {
68. switch (GetEntry().Reason())
69. {
70. case drama::EntryCode::BulkDone:
71. {
72. // Bulk data transfer finished.
73. MessageUser("MyRescheduleHandler:: BulkDone");
74. delete bigDataSds;
75. bigDataSds = nullptr;

112 of 135 Section 9.1 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

76. return drama::RequestCode::End;
77. }
78. case drama::EntryCode::BulkTransferred:
79. {
80. // Bulk data Transfer progress message.
81. DitsBulkInfoType BulkInfo = GetEntry().GetBulkInfo();
82.
83. double percent_done =
84. (((double)(BulkInfo.TransferredBytes)/
85. (double)(BulkInfo.TotalBytes)) * 100.0);
86.
87. MessageUser("BulkTransferred:" +
88. std::to_string(percent_done) + "%");
89. return drama::RequestCode::Sleep;
90. }
91. case drama::EntryCode::Rejected:
92. {
93. // Bulk data transfer rejected.
94. delete bigDataSds;
95. bigDataSds = nullptr;
96. DramaTHROW(GetEntry().Status(),
97. "Bulk data transfer rejected");
98. }
99. default:
100. {
101. MessageUser(
102. "MyRescheduleHandler:: UNEXPECTED Message");
103. break;
104. }
105. } // switch
106. return drama::RequestCode::Sleep;
107. }

The reschedule handler, from line 66, is basically a switch on the notification reason (line 68).
When an entry with a reason of drama::EntryCode::BulkTransferred is received,
it just reports the transfer progress (lines 79 to 89) and reschedules. If
drama::EntryCode::BulkDone is received, it is free to release the bulk data shared
memory segment (line 74). It is also possible the transfer to be rejected – line 91.

You can test this example using ditscmd. For example
>> ./exam9_1&
[1] 21664
>> ditscmd EXAMPLE9_1 TEST
DITSCMD_54b1:Trigger Message from Action "TEST", Task "EXAMPLE9_1". value
= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 .
DITSCMD_54b1:EXAMPLE9_1:MyRescheduleHandler:: BulkDone
>> ditscmd EXAMPLE9_1 EXIT
[1] + done ./exam9_1

In this case, “ditscmd” doesn’t actually know it received a bulk data message. It just sees
an SDS argument to a trigger message. Later code below shows how to deal with receiving
bulk data when the default handling is not sufficient.
[Consider version of SendBulkTrigger which wraps up the wait, particularly when done from
thread]

AAO/DRAMA2 Section 9.1 113 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

9.1.3 Sending a Bulk Data Obey/Kick message
You can send Obey or Kick messages including bulk data arguments.
drama::Path::ObeyBulk() and drama::Path::KickBulk() are used. The
argument is also created using drama::BulkData or drama::BullkDataSds.

This is actually simpler the trigger message case, as the blocking nature of the Obey/Kick
methods allows everything to be wrapped up nicely. Example 9–2 shows how it is done.
This example uses a convenience class for creating the bulk data – from lines 1 to 35, which
makes the ActionThread() method very simple. See lines 48 to 54. Because everything
is done when the ObeyBulk() method returns, the bulk data can be released immediately
(by its destructor)

Example 9–2. Obey message with bulk data.
1. // Convenience class for constructing a BulkDataSds item.
2. class MyBulk : public drama::BulkDataSds {
3. public:
4. MyBulk(drama::Task *theTask) {
5. // Create a template SDS item.
6. drama::sds::Id myTemplate =
7. drama::sds::Id::CreateArgStruct();
8.
9. std::vector<unsigned long> dims(2);
10. dims[0] = 1024;
11. dims[1] = 512;
12.
13. drama::sds::Id childArray =
14. myTemplate.CreateChildArray(
15. "BYTE_ARRAY", SDS_BYTE, dims);
16.
17. // Create the bulk data item and move to this object.
18. this->drama::BulkDataSds::operator=
19. (drama::BulkDataSds(theTask, myTemplate));
20.
21. // Find the child item so we can fill it.
22. childArray = this->Find("BYTE_ARRAY");
23.
24. // Fill the data array with something
25. drama::sds::DataPointer<char[]> dataArray(childArray);
26. char val = 0;
27. for (auto &item : dataArray)
28. {
29. val = val % 128;
30. item = val;
31. val ++;
32. }
33.
34. }
35. };
36.
37. // Action definition.
38. class RunAction : public drama::thread::TAction {
39. drama::Task *_theTask;
40. public:
41. RunAction(drama::Task *theTask) :
42. TAction(theTask), _theTask(theTask) {}
43. ~RunAction() {}
44. private:
45.

114 of 135 Section 9.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

46. void ActionThread(const drama::sds::Id &) override {
47. // Create a bulk data SDS shared memory segment.
48. MyBulk bigDataSds(_theTask);
49. // Find the path to the program, loading it if needed.
50. drama::Path server(
51. _theTask, "EXAMPLE9_3", "", "./exam9_3");
52. server.GetPath(this);
53. // Send the SDS structure using bulk data.
54. server.ObeyBulk(this, "TEST1", &bigDataSds);
55.
56. }
57. };

There are versions of drama::Path::ObeyBulk() and
drama::Path::KickBulk() which take a drama::BulkData item for the argument
rather then drama::BulkDataSds as used in example. There are also waiting versions of
these. There are also “WaitUntil” versions of these methods; through you have to think hard
about the bulk data item destructors when using these.
Testing of Example 9–2 will need Example 9–3 below.

9.2 Receiving Bulk Data
As mentioned above, if a message has Bulk Data argument that contains an SDS item, then
the receiving task need do nothing – things will work as normal (but be more efficient).
But – the receiver can take more control over the memory segment.

9.2.1 Non-threaded actions
Actually – it is only non-threaded actions (at the moment), which can take more control when
receiving bulk data messages. The object returned by the
drama::MessageReceived::GetEntry() method provides the ArgIsBulk()
method to allow an action reschedule event to determine if it has a bulk data argument. If this
is true, then an object of type drama::BulkDataArg or is subclass
drama::BulkDataArgSds can be constructed in the action. Both of these are subclasses
of drama::BulkData, whist BulkDataArgSds is also a sub-class of drama::sds.
The BulkDataArg class provides access to the raw memory segment that is the argument,
whilst BulkDataArgSds presumes the memory segment contains an SDS structure and
provides access to that.
The GetNotifyBytes() method of these classes allows you to fetch the requested
notification interval, in bytes, that the sender has requested. The Report() method is the
method used to actually report on usage (triggering an entry with code
drama::EntryCode::BulkTransferred in the sender). This might be useful in say
cases where you are processing an image and can allow the sender to reuse the area of the
image you have already processed. The destructor releases the shared memory segment and it
is at this point that the sender will get an entry with the code
drama::EntryCode::BulkDone.

Example 9–3 is a relatively simple bit of code. The action TEST1 has checks to see if it has
an argument (lines 12 and 14), and if yes, checks to see if it is bulk data (18). If yes, then it
creates a BulkDataArgSds item (line 21) and lists it.

AAO/DRAMA2 Section 9.2 115 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

Example 9–3 Receiving Bulk Data
1. class Test1 : public drama::MessageHandler {
2. public:
3. Test1() {}
4. ~Test1() {}
5. private:
6.
7. /*
8. * Invoked when the Obey message is received. Just
9. * ends immediately
10. */
11. drama::Request MessageReceived() {
12. drama::sds::Id Arg = GetEntry().Argument();
13. // Arg is only true for SDS argument.
14. if (Arg)
15. {
16. MessageUser(
17. "TEST 1 action running and has argument");
18. if (GetEntry().ArgIsBulk())
19. {
20. MessageUser(" Argument is bulk data");
21. drama::BulkDataArgSds bArg(GetTask());
22. bArg.List(SdsListToUser());
23. }
24. else
25. {
26. MessageUser(" Argument is not bulk data");
27. Arg.List(SdsListToUser());
28. }
29. }
30. else
31. {
32. MessageUser("TEST 1 action running - no argument");
33. }
34.
35. MessageUser("TEST 1 complete");
36. return drama::RequestCode::End;
37. }
38. };

The same approach will work for Kick messages.

Below we see Example 9–2 and Example 9–3 being exercised with ditscmd.
>> ./exam9_3 &
[1] 20081
>> ./exam9_2 &
[3] 20082
>> ditscmd EXAMPLE9_3 TEST1
DITSCMD_4e74:EXAMPLE9_3:TEST 1 action running - no argument
DITSCMD_4e74:EXAMPLE9_3:TEST 1 complete

>> ditscmd EXAMPLE9_3 TEST1 "quick fox"
DITSCMD_4e75:EXAMPLE9_3:TEST 1 action running and has argument
DITSCMD_4e75:EXAMPLE9_3: Argument is not bulk data
DITSCMD_4e75:EXAMPLE9_3:ArgStructure Struct
DITSCMD_4e75:EXAMPLE9_3: Argument1 Char [10] "quick fox"
DITSCMD_4e75:EXAMPLE9_3:TEST 1 complete

>> ditscmd EXAMPLE9_2 RUN

116 of 135 Section 9.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

DITSCMD_4e76:EXAMPLE9_3:TEST 1 action running and has argument
DITSCMD_4e76:EXAMPLE9_3: Argument is bulk data
DITSCMD_4e76:EXAMPLE9_3:ArgStructure Struct
DITSCMD_4e76:EXAMPLE9_3: BYTE_ARRAY Byte [1024,512] { 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...}
DITSCMD_4e76:EXAMPLE9_3:TEST 1 complete

>> ditscmd EXAMPLE9_2 EXIT
>>
[3] + done ./exam9_2
>> ditscmd EXAMPLE9_3 EXIT
[1] - done ./exam9_3

9.2.2 Threaded Actions
There is (as yet) no special handling available for bulk data in threaded actions. But, in that
case where a bulk argument contains an SDS item, that item is accessed from within the bulk
data in an efficient manner – avoiding the copy which is required for non-bulk SDS
arguments to threaded actions.

AAO/DRAMA2 Section 9.2 117 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

10 User Interfaces

In every example developed so far, the DRAMA code of interest has been executed within a
DRAMA action, within a threaded or non-threaded action. The messages are processed in a
“DRAMA Context”, that of an Obey message or a Kick message. The examples so far have
used the “ditscmd” program to send the messages. But how can you write something like
“ditscmd”? This applies to any user interface that wants to send DRAMA messages.

DRAMA has the concept of a “User Interface” (UFACE) context to support sending
messages from outside DRAMA to DRAMA tasks. The underlying C level concept is that
before using one of the message sending routines, you invoke a particular routine
(DitsUfaceCtxEnable()) which supplies a function which will be invoked to respond
to reply messages, in the same way that an action’s reschedule handler will be invoked to
reply to messages sent by an action.
DRAMA 2 provides access to this feature. An important part of the DRAMA 2 design was to
support modern GUIs (such as a JAVA based GUI), which use threads to dispatch events
from the GUI. The GUI threads must be able to send DRAMA messages.
In DRAMA 2, the key is the drama::thread::TUface class. Like
drama::thread::TAction, this class is a sub-class of
drama::thread::TMessHandler and the address of an object of this type can be
specified as the “action” handler object to each of the drama::Path methods which send
messages. So almost all the message sending “Control Task” code we have seen in sections 7
to 9 can be rewritten using one of these objects instead of the TAction object.

A thread wanting to send a DRAMA message should first create an object of the
drama::thread::TUface class. It can then send messages as required. The result is actually
quite simple, and most of the complexity in our first example is about how the thread itself
gets started and its results are handled
Example 10–1 below is a simple program that runs the program from Example 2–1 from a
User Interface thread. The example code will get a path to the EXAMPLE2_1 task, send it the
HELLO action and then the EXIT action. It will then exit itself. In this, it is behaving in a
similar way to “ditscmd”.

A thread invoking the function MyThread() does the work. At line #8, it creates a
drama::thread::TUface object. It can then get a path to the task (line #13_ and send
the messages (lines 16 and 17).
To trigger the DRAMA Main loop to exit, it must invoke
drama::thread::SignalDramaToExit(). Note – this is only necessary if you want
the DRAMA Main loop to exit, typical of a simple command line program. For a proper
GUI, this would not normally be done at this point, instead you would invoke
SignalDramaToExit() as part of your GUI shutdown.

The reason for the try/catch block is that, in this example, if you don’t invoke
SignalDramaToExit() then the program will never exit. So even if an exception is
thrown, you must ensure you invoke it. This type of thing is not an issue in action code, since
DRAMA starts the action thread and tidies up correctly.
As for the rest of the implementation of this program, it is a touch more complicated. The
UfaceTask constructor is required to start the thread that sends the messages (line #60).

118 of 135 Section 9.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

But before doing that, it must block signals to avoid race conditions. You can do this
constructing a drama::thread::SignalBlocker object, line #54. The signals will be
restored when the object is destroyed. The future created by starting the async() thread is
stored.
The real extra complexity in this example is in the shutdown. This is because we must ensure
that any exceptions thrown by the thread are transferred to the main code, but we must also
handle a failure of the thread to finish. The WaitThreadExit() method does this. The
idea is that this is invoked after drama::task::RunDrama() returns, that is, the
DRAMA task is shutting down. It first waits a number of seconds for the thread to complete.
Since in most cases, the thread completion is what triggered the DRAMA task to shut down
(call to SignalDramaToExit()), then this should happen quickly. It must then do a
get() on the future, so that the thread is cleaned up correctly and any exception thrown by
the thread can be propagated.
To ensure this is done after drama::task::RunDrama() exits, the UfaceTask class overrides
RunDrama() (line 84), with its implementation calling the original before it invoked
WaitThreadExit().

Example 10–1. Basic User Interface Example
1. void MyThread(drama::Task *task)
2. {
3. try
4. {
5. // We must create a ufaceHandler at this point.
6. // Only then can we send DRAMA messages.
7. // Also block all signals to the thread.
8. drama::thread::TUface ufaceHandler(task);
9.
10. // Find the parth to the EXAMPLE2_1 program
11. drama::Path server(task, "EXAMPLE2_1",
12. "", "./exam2_1");
13. server.GetPath(&ufaceHandler);
14.
15. // Send messages.
16. server.Obey(&ufaceHandler, "HELLO");
17. server.Obey(&ufaceHandler, "EXIT");
18.
19. }
20. catch (...)
21. {
22. // Tell DRAMA To exit - causes task to exit
23. drama::thread::SignalDramaToExit(task);
24. throw;
25. }
26. // Tell DRAMA To exit - causes task to exit
27. drama::thread::SignalDramaToExit(task);
28. }
29.
30. /* DRAMA UFACE example task.
31. */
32. class UfaceTask : public drama::Task {
33.
34. private:
35. // Future for the thread running the task.
36. std::future<void> _ufaceThreadFuture;
37. public:
38.

AAO/DRAMA2 Section 9.2 119 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

39. /**
40. * Constructor, from here we add actions
41. * and start the thread.
42. */
43. UfaceTask(const std::string &taskName) :
44. drama::Task(taskName) {
45.
46. Add("EXIT", drama::SimpleExitAction);
47. /*
48. * By constructing one of these, we block all
49. * signals whilst the thread is being created,
50. * to avoid race conditions. The thread will block
51. * signals itself once it starts running. The
52. * destructor restores the signal mask.
53. */
54. drama::thread::SignalBlocker threadSignalBlocker;
55.
56. /*
57. * Launch the thread.
58. */
59. _ufaceThreadFuture = std::async(std::launch::async,
60. MyThread, this);
61. }
62. /*
63. * Used to wait for the thread started in the
64. * constructor to exit.
65. * Timeout in seconds supplied
66. */
67. void WaitThreadExit(unsigned seconds) {
68. // Wait for thread to exit.
69. if (_ufaceThreadFuture.wait_for(
70. std::chrono::seconds(seconds)) !=
71. std::future_status::ready)
72. {
73. DramaTHROW(DRAMA2__THREAD_TIMEOUT,
74. "UFACE Thread did not complete");
75. }
76. // Get on future. Will throw if async thread did.
77. _ufaceThreadFuture.get();
78. }
79.
80. ~UfaceTask() {
81. }
82. // Override RunDrama, so we can wait for
83. // the thread to exit.
84. void RunDrama() override {
85. drama::Task::RunDrama();
86. WaitThreadExit(3);
87. }
88. };
89.
90. /** Program main.
91. *
92. */
93. int main(int /*argc*/, char * /*argv*/[])
94. {
95. drama::CreateRunDramaTask<UfaceTask>("EXAMPLE10_1");
96. return 0;
97. }
98.

120 of 135 Section 9.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

It should be possible to implement any user interface using the techniques from Example 10–
1. It is important to remember that MyThread() does not complete until the message has
returned. If the return of the thread is important for GUI response, please consider the impact
and if a child thread is required.

AAO/DRAMA2 Section 11.1 121 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

11 Logging

Logging is an important feature of DRAMA. Complex multitasking systems require logging
to allow tracing of complex interoperability problems and task errors. In traditional
DRAMA, this is provided by the GitLogger C++ class. This class provides an interface
which supports different logging levels, allows defaults to be set via environment variables
and the current logging level to be changed by sending an action message to a task. But the
GitLogger class is not threads friendly.

The drama::logging::Logger class is the DRAMA 2 equivalent. It is very similar to
the old GitLogger class, and produces a similar log file.

An object of this type is created automatically as part of the creation of a DRAMA 2
drama::Task object. User code must invoke the Open() method to actually open the
log file. That can be done in an action or the main line code. From your task object, you
access the logger using the drama::Task::Logger() method.

The system has the concept of “logging levels”. For example, you may want some things
logged all the time, but others only when debugging a certain feature. Internally, the “logging
levels” are a mask. During the invocation of a Log() call, the current logging levels are
“and-ed” with the levels in the Log() call, and the message is written to the log file only if
the result is non-zero. This means your task can have a lot of potential logging calls, but most
of it can be disabled most of the time, able to be turned on by an action on demand.

11.1 Simplified Usage
When your task is created, it creates a drama::logging::Logger object. The
constructor of this will create an action named LOG_LEVEL and a parameter also named
LOG_LEVEL (if it does not already exist), allowing a task to meet the GIT specification.
Another parameter named GITLOG_FILENAME is also created.

You can access the logger using the drama::Task::Logger() method. During your
task constructor or during an action (such as INITIALISE/RESET), you should invoke
<task>.Logger().Open(<<system_name>>) where <<system_name>> is a
“system” name used for finding environment variables. The <<system_name>> is
normally related to the default task name, but need not be.
The LOG_LEVEL action can be used to change the logging levels. The argument is a
comma-separated list of levels represented as a string. The specified levels are added to the
levels to be logged. The logging of a level can be turned off by prefixing its string name with
“NO”. The LOG_LEVEL parameter has the current values.

Use the <task>.Logger().Log() or .SLog() methods or the to actually log
messages to the file. The .Log() versions are more efficient but use C printf() style
formatting for arguments and hence are not type safe. The .SLog()versions use a type safe
approach implemented using string streams, but are less efficient.

11.2 Environment Variables
The initialization of drama::Logger is controlled by number of environment variables,
the same set used by GitLogger. The table below describes these.

Environment Variable Default Value if not set. Description.

122 of 135 Section 11.3 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Environment Variable Default Value if not set. Description.
<system_name>_LOG_LEVEL Defers to

DRAMA_LOG_LEVEL
below

Contains the initial
logging levels for the
task. A comma
separated list of log
level names.

DRAMA_LOG_LEVEL Defers to the
LOG_LEVEL parameter.

Contains the initial
logging levels for the
task. A comma
separated list of log
level names.

DRAMA_LOGDIR Value supplied to the
Open() call. If that is
null, then the current
directory.

Supplies the name of
the directory where
the log file is to be
written.

GIT_LOGGER_COMPRESS Value supplied to the
Open() call.

If set, then the log
file will be
compressed

GIT_LOGGER_NOCOMPRESS Value supplied to the
Open() call.

If set, then the log
file will not be
compressed even if
the Open() call
indicates it should be.

11.3 Log file locations/naming/day rollover.
The log file is written in the directory specified as the second argument to
drama::logging::Logger::Open(). If this is specified as an empty string, then the
DRAMA_LOGDIR environment variable specifies the directory. If this is not defined, then the
current working directory is used. It is AAO practice to use the DRAMA_LOGDIR
environment variable approach. It is appropriate that this directory be in a local disk, not a
network disk, to ensure good performance.
The log file name has for format

{taskname}-{date}.<ver>.log.[.gz]

Where

{taskname} is the DRAMA name of the task.

{data} is the current UT date in the format “YYYY-MM-DD”. This format allows
an appropriate default order. The log file system uses UT time/dates throughout to
ensure a consistent log file over events such as changes in daylight savings (summer
time).
<ver> is the log file version number. Each time a task calls Open(), the version
number will be incremented. Starts at “00”. A new version will be started each time
the file reaches about 1 GB in size.

AAO/DRAMA2 Section 11.4 123 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

[.gz] will be appended if the log file is compressed on write.

For example, if DRAMA_LOGDIR= /home/tjf/odc_temp/logs/, then:”
/home/tjf/odc_temp/logs//GITTEST-2015-03-16.06.log

is the sixth log file opened by the task GITTEST on the UT date 16th of March 2015.

11.3.1 Day Rollover
The name of the log file is based on the current UT date. The first time a message is written
to the log file after a change in the UT date, the current log file is closed an a new log file is
opened.

11.4 Actions/Parameters

11.4.1 LOG_LEVEL Action
The LOG_LEVEL action is used to set the logging levels. The argument to the action is a
comma-separated list of levels represented as a string. The specified levels are added to the
levels to be logged. The logging of a level can be turned off by prefixing its string name with
“NO”. See section 11.5, below, for the list of levels and their string names.

Level names can be abbreviated to the minimum significant numbers of characters and case is
not significant.

11.4.2 Parameters
Two parameters are added to the task by drama::logging::Logger. The LOG_LEVEL
parameter contains the current logging levels.

The GITLOG_FILENAME parameter will contain the name of the log file.

11.4.3 Related control messages
DRAMA Control messages, see section 7.13, provide some access to the logger. In particular,
you can write a message directly to the log file (LOGNOTE) and get some details from it
(LOGINFO). You can also flush the log file on deman(LOGFLUSH).

11.5 Logging levels
 The table below lists each of the levels and the macro used to represent them. Also listed is
the name of the equivalent macro in calls to DitsLogMsg(), where these is one.

Level Macro DitsLogMsg()
equivalent

Description

STARTUP D2_LOG_STARTUP DITS_LOG_STARTUP Log startup messages.

ERRORS D2_LOG_ERRORS Log errors - messages
output by ERS and
details of actions
completing with bad
status.

 ACTENT D2_LOG_ACTENT Log Action and UFACE
entry. Used by

124 of 135 Section 11.6 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Level Macro DitsLogMsg()
equivalent

Description

DRAMA logging

ACTEXIT D2_LOG_ACTEXIT Log Action and UFACE
return. Used by
DRAMA logging.

INST D2_LOG_INST DITS_LOG_INST Log instrument specific
functions.

COMMS D2_LOG_COMMS Log DRAMA
communications
(sending of messages
etc).

ARGS D2_LOG_ARGS If logging action entry
and/or action
exit/comms, also log a
string giving the details
of any argument. For
comms logs, this is only
arguments to a send
(obey etc).

DEBUG D2_LOG_DEUG Log debugging
messages

DRAMA2 D2_LOG_DRAMA2 Log DRAMA 2
internals.

USER1 D2_LOG_USER1 DITS_LOG_USER1 User defined level 1.
Equivalent to

USER2 D2_LOG_USER2 DITS_LOG_USER2 User defined level 2.
Equivalent to

USER3 D2_LOG_USER3 User defined level 3.

USER4 D2_LOG_USER3 User defined level 4. For
DRAMA 2 tasks, when
this is specified in the
DRAMA_LOG_LEVEL
environment variable
value, this is equivalent
to the DRAMA2 level.

ALL D2_LOG_ALL All levels are defined.

It should noted that when specifying the DRAMA_LOG_LEVEL environment variable value in
a system which might have older DRAMA tasks, specifying the DRAMA2 value will cause the
older tasks to fail. Instead specify the “USER4” value, which is translated to the DRAMA2
value (but only if found in the DRAMA_LOG_LEVEL environment variable).

11.6 Opening the log file.

AAO/DRAMA2 Section 11.7 125 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

The drama::logging::Logger::Open() method takes three arguments, two of
which has defaults. The first argument is the system name, used to determine the actual name
of the <system_name>_LOG_LEVEL environment variable. This is normally set to a
value related to the default task name, but where a given task may run under different names,
you will probably want this value to be the same for all cases.
The second argument is the directory into which to put the log file. If an empty string is
supplied, it will use the value of the DRAMA_LOGDIR environment variable, and if that has
no value, the current default directory. Defaults to an empty string.
 The third argument is a logical. If set true, then the log file is compressed. Defaults to false.
If you compress your file, it may take longer to write (depending on CPU vs disk space) and
may be harder to search.

11.7 Logging Messages
Most logging is likely to be done with the drama::logging::Logger::Log() or
drama::logging::Logger::SLog() methods. The former takes four or more
arguments. The first is the mask of log levels. This is used to indicate when this message
should be written to the log file. For example, if the value is

D2LOG_DEBUG|D2LOG_USER1

Then it is written if the current log level is DEBUG or USER1.
The second argument is a logical. Set true to indicate the forth argument is a plain string
(const char *), rather then something with C printf() style formatting. If the
function author knows the string does not need formatting, it is much quicker to tell the
method.
The third argument is a message prefix. This is a string of at most 20 characters, which is
written to a particular field in the log file with the message. It is normally used to indicate the
routine/method etc from which the log message was written.
The fourth argument is a C printf() style format string. Arguments 5 onwards are the
arguments to the printf() format string.

An example call to the Log() is shown below. Note, user code would not normally use the
D2LOG_DRAMA2 level. The INST, DEBUG and USER<n> levels are more appropriate for
user code.
 _theTask().Logger().Log(D2LOG_DRAMA2, false,
 "d2::Path::GtPthImmd",
 "Object %p:Get path to %s",
 (void *)this, _taskName.c_str());

11.7.1 SLog()
C printf() style format strings don’t fit very well with C++. They do provide a quick
way to format simple C types and strings, but don’t work with classes. The
logger.SLog() methods are one approach to avoiding them. These methods use a neat,
but probably run-time inefficent (I haven’t tested the performance) approach that is type-safe
and can format any argument which provides the standard “<<” operator to a
std::ostream object. The format string in this case just has a single “%” character for
each argument. The above example would become:
 _theTask().Logger().SLog(D2LOG_DRAMA2,"d2::Path::GtPthImmd",

126 of 135 Section 11.7 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

 "Object %:Get path to %",
 (void *)this, _taskName);

Note that you don’t need things like “%d” (for an integer), just the “%” is needed as the “<<”
operator knows how to format the argument. (In fact, in this case, the “d“ will errantly
appear in the output.)
Note that the second logical argument of logger.Log() has disappeared – it is not needed.
One problem of of logger.SLog() is that if you get the number of arguments wrong, an
error message occurs at run-time rather then compile time (For the printf() approach,
many modern compilers can work out if you go that wrong). A second problem with
SLog() is that you have somewhat limited control over the formatting – see §11.7.1.1
below.
There is another overload of logger::SLog() that adds an extra argument before the
logging level. This extra argument is an output stream, of type std::ostream &. If this
version is used, the log message is also written to that stream. The author has found this
useful when developing an application where many log messages may be wanted on stderr
during development, but are only wanted in the log file during production. To acheive this,
the author will, when finished development, just do a global replace of the string
“.SLog(std::cerr”, with “.SLog(“.

11.7.1.1 Limited formatting with SLog() via Manipulators
You can achive some formatting control when using logger::SLog() by using stream
manipulators as arguments. To make this work, you add an extra “%” character at the point in
the string where you want to change the formatting. You then supply the manipulator as the
corrresponding argument. But please note that putting two “%” characters together does not
work as you might think – it produces one “%” in the output, you have to work around this
limitation. See §11.10.1.1 for some more details and a related example.
If this is not sufficient, you will have to use either the Log() method or the “Log Stream
Buffer” approach, below.

11.7.2 Log Stream Buffers
Another way around the C printf issues of logger::Log() is to use the
drama::logger::LogStreamBuf class. You can use this to create a std::ostream
object, and write to this using standard stream methods and get all for formatting features of a
stream.
Use the logger to create a LogStreamBuf object, which you then use to create the
std::ostream object – see the example below. Messages are not actually written to the
log file until either a std::endl is written, or LogStreamBuf::flush() is invoked,
or the destructor is run. The time tag associated with the log entry is when the line is written
to the file (e.g. std::endl is output or a flush happens), not when the first part of the
message was written.
The code below shows how to use this. The second and thread arguments to the constructor
are the logging level and prefix, as per the first and third arguments to logger::Log().
drama::logging::Logger &logger =
 std::shared_ptr<drama::Task>(_theTask)->Logger();

AAO/DRAMA2 Section 11.8 127 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

drama::logging::LogStreamBuf logBuf(&logger,
 D2LOG_INST,
 "LogTst:ActionThreadS");

std::ostream slogger(&logBuf);
slogger << "Slogger:First line of logging output, target task:"
 << std::setw(10)
 << _targetTask
 << std::endl;
slogger << "SLogger:Second line of logging output" << std::endl;

11.8 Interaction with DITS debugging.
The DRAMA DITS C library provides the function DitsLogMsg() for user logging. This
call allows libraries to be written which can log to whatever logging system the task is using.
If that task does not have a logger, the call is a null operation. The table above lists the
macros which can be used with DitsLogMsg().

Additionally, the DITS library has internal debugging facilities. This is controlled by the
DitsSetDebug() routine, or the DITS_DEBUG environment variable (or control
messages). See DitsSetDebug() for details of levels etc. If internal DITS debugging is
enabled, and the task has a logger, the messages are written to the log file. If the task has no
logger, then they are written to stderr.

The DRAMA2 logger will actually write these to stderr if the log file is not open, so that a
task that does not open a log file behaves as per a task without a logger.

11.9 Log file content.
The log file contains 6 column separated columns, but it must be noted that the Time
specification includes its own two colons.

Column Size
(Characters)

Description

Time of Message 19 The time of the message.
Format “DD-MMM hh:mm:ss.sss”

Action Name 21 Name of action. Most also have the string
 “—SYNC-EVENT—“ indicating a sync to
disk event,
“—UFACE-CONTEXT—“ for a message from
UFACE Context,
“—DITS-FIXED-PART—“ for a message
from the DITS (DRAMA) code.
“—UNKNOWN-THREAD—“ for a message
from a thread is not known to the logging
system. The RegisterThread() method
can be used to associated a user created thread
with an action it is part of.

128 of 135 Section 11.10 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

Column Size
(Characters)

Description

Thread ID 16 The thread ID

Thread Func 16 The thread function name (actually just the
function name string passed to
logger.RegisterThread().)

Sequence 10 The action sequence number. Will be -1 for
things such as sync events. Will be “T” for a
message from a thread, other then the thread
executing drama::Task::RunDrama().

Message Prefix 20 User supplied message prefix

Message Unlimited The actual log message.

An example of typical log entries (with excess spaces removed and the thread thread function
field removed as otherwise it gets to long) is below.
----------- task LOGTEST ----------------------
Time of Message :Action Name :Thread ID :Sequence Message Prefix :Message
02-Apr 02:17:08:786:--UFACE-CONTEXT- :4158920400: 0:d2::Logger :Opened log file
02-Apr 02:17:08:786:--UFACE-CONTEXT- :4158920400: 0:d2::Logger :Logging levels set to
default values
02-Apr 02:17:08:786:--UFACE-CONTEXT- :4158920400: 0:d2::Logger :*** Logging levels set, old
= c0022, new = c0032
02-Apr 02:17:08:786:--UFACE-CONTEXT- :4158920400: 0:d2::Logger :Initial logging levels set
to ERRORS,INST,MSG
02-Apr 02:17:08:786:--UFACE-CONTEXT- :4158920400: 0:d2::Logger :Task Version is r1_32, date
01-Apr-2015
02-Apr 02:17:08:786:--UFACE-CONTEXT- :4158920400: 0:d2::Task::RunDrama :Invoked
02-Apr 02:17:20:229:--SYNC-EVENT- :4158920400:-1: :LogFlush() method (Probably
DitsMsgReceive())
02-Apr 02:17:48:155:TEST1 :4155722640: T:ERS :Task TESTTASK not known
locally and no node supplied to find it on
02-Apr 02:17:48:155:TEST1 :4155722640: T:ERS :Annulling 1 messages at
context 2
02-Apr 02:17:48:168:TEST1 :4158920400: 1:ERS :DRAMA Exception thrown and
reported via ERS

The task version number and dates are retrieved from the GIT ENQ_VER_NUM and
ENQ_VER_DATE parameters, if they exist. There are a few lines, such as the first two, that
don’t follow the format.

11.10 Type and thread safe printf style output to stdout/stderr.
A slight diversion from logging to simple output to stdout or stderr, as is often done
whilst debugging. First note that any output from you task that is intended for the user should
normally be done via MessageUser() or the exception handling or ERS systems. These
methods ensure the message gets back to the user. There is also the
drama::MessageUserStream class, which can be used to contruct a std::ostream
sub-class that can be used to output such messages.
But whilst debugging a task, output to stdout or stderr may be required. The normal choices
are the C printf() style functions – simple but unable to handle C++ objects – or C++
output to streams std::cerr/std:cerr. The later are safer then the printf() style functions,
but at times the result is very complicated.
As seen in section 11.7.1 above, DRAMA2 has some ability to output safely in a printf()
style way. The features are used to implement drama::logging::SLog() and for

AAO/DRAMA2 Section 11.10 129 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

internal debugging are also available for general use. These fuctions use a neat, but probably
run-time inefficent (I haven’t tested the performance) approach that is type-safe and can
format any argument which provides the standard “<<” operator to a std::ostream
object. The format string in this case just has a single “%” character for each argument. The
first of the functions is drama::SafePrintf(), a simple print to a stream. For example:
 drama::SafePrintf(std::cerr "Object %:Get path to %\n",
 (void *)this, _taskName);

Which many would find easier to read then the standard streams approach of:

 std::cerr << “Object “ << (void *)this << “:Get path to “
 << _taskName << std::endl;

Note that you don’t need things like “%d” (for an integer), just the “%” is needed as the “<<”
operator knows how to format the argument. (In fact, in this case, the “d“ will errantly
appear in the output). Also that one problem of of these functions is that if you get the
number of arguments wrong, an error message occurs at run-time rather then compile time
(For the printf() approach, many modern compilers can work out if you go that wrong). A
second problem is that you have limited control over the formatting (see §11.10.1.1, below).
Finally, you need to specify a “\n” to flush the line.

In addition to drama::SafePrintf(), there is also drama::TSafePrintf(). This
is probably to be preferred in any task with a lot of threads active. The
drama::TSafePrintf() function ensures that for each call, all the output from that call
is output in one output operation. That is, thread switching will not (normally) cause the a
line be broken. There is still some small scope for such issues, but they have not been seen in
practice.
Finally – it should be noted that drama::SafePrintf()can be used to write to a string
stream (std::stringstream). That might be usefull in cases where you need to format
into a string safely.

11.10.1.1 Limited formatting control with SafePrintf() via Manipulators
You can achive some formatting control when using drama::SafePrintf() through it
has some limitations. First, you can apply stream manipulators to the stream before calling
SafePrintf(). The problem with that is that you then can’t change formatting control
during the output of the line (e.g. you can’t format different floating point numbers in
different formats).
The other approach is to apply the manipulators as arguments. To make this work, you add
an extra “%” character at the point in the string where you want to change the formatting.
You then supply the manipulator as an argument at the corresponding point. See the
following example
#include <iomanip>
…
std::cerr << std::fixed << std::showpoint;
drama::SafePrintf(std::cerr,
 "Testing of output via SafePrintf - %,% %\n",
 "string", std::setprecision(2), 12.3333);

130 of 135 Section 11.10 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

The above example will format the floating point number as “12.33”. The main issue with
this approach is that you can’t put two “%” characters immediately next to each other (it
results in one such character being output). The above example puts the formatting “%”
character immediately after the comma, allowing a space before the floating point number is
place. This works well in this case, but may not in others.

AAO/DRAMA2 Section 12.1 131 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

12 Internals

Currently a ramble through some features. May be extracted to its own document.

12.1 Action Threads
An action which wants to be implemented using a thread, must be a sub-class of
drama::thread::TAction. This is itself a sub-class of
drama::thread::TMessHandler and drama::MessageHandler.

The sub-classing of drama::MessageHandler allows such objects to be specified as an
action handler object, with the MessasgeReceived() method being implemented to
handle action obey messages.

The user sub-class of TAction must implement the ActionThread() method.

The result of the call to MessageReceived() is that the ActionThread() method is
invoked within a new thread.
MessageReceived() will first installed new Obey and Kick reschedule handler objects to
handle future events (_obeyRescheduleObj and _kickMessageObj). The former
will result in TAction::ObeyReschedule() being invoked, the later
TAction::KickMessage().

The thread is then started and will run the
“thread::TAction::RunActionThread() method”. This will run the user’s
ActionThread() method. It then invokes the ActionThreadComplete() which
will signal DRAMA. This is done even on exceptions. When an exception is thrown by
ActionThread(), it is re-thrown after the call to ActionThreadComplete().

12.1.1 ActionThreadComplete()
This must look for any threads which are waiting for drama messages and let them know they
will never arrive – done by calling TAction::SignalWaitingTheads().

Is then signals DRAMA using TAction::SignalDrama(), which causes a message to
be put on the _signalQueue before a DRAMA2 signal is sent to the task.

12.1.2 ObeyReschedule()
This is invoked on any reschedule of the action (other then a kick message). So it is
responding to messages from subsidiary tasks, GetPath messages. Of particular interest is the
DRAMA 2 signals processed by TAction::ProcessDrama2Signal().

12.1.3 ProcessDrama2Signal()
If invoked with a signal of Complete, will join the thread by invoking get() on the future
associated with it. This will cause any exception to passed through.
Otherwise just reset the timeout.

132 of 135 Section 12.2 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

12.2 Sending Messages from threads
Thread must either be implemented via a thread::TAction object (Threaded action)
must create a thread::UFace object (UFACE thread). Both of these inherit from
thread::TMessHandler, which provides an interface to the common messaging
facilities.

12.2.1 Type message – Obey()
The first argument is the thread::TMessHandler object to use. This is passed to the
“Send” method.

Fifth argument is the event processor – class thread::MessageEventHandler. This
is a sub-class of thread::TransEvtProcessor, which is used to process message transaction
events. thread::MessageEventHandler implements Process() and calls its own
methods for each type of response message.

12.2.1.1 Send()
After some checks on the path etc, changes context to the action/uface context.

Sends the message (DitsInitiateMessage()).

Invokes NewTransaction() on the event handler.

Invokes SetupWaitEvent() on messHandler
(thread::MessageEventHandler Object).

12.2.1.1.1 SetupWaitEvent()

Both the TAction and UFace versions of this invoke thread::SetupWaitEvent().
They provide the address of their own versions of the _waitEventMap object. The UFace
version ensures the TID is not null.
The _waitEventMap object is a mapping index by thread ID, giving us event details.
There can only be one event (transaction) associated with a given thread. But, a given
TAction/UFace object may have multiple threads running and hence multiple transactions
outstanding.
If we don’t already have a map entry for this thread, create one. If we do have one, we expect
it to be idle (not waiting) and update the details. If it is still waiting – programming error.
The _waitEventMap items are WaitEventDetails structures. This includes details of
the transaction and a condition variable used to block threads on. The condition variable is
stored as a std::shared_ptr, so we are only moving pointers about and the last one will
clean it up.

Each WaitEventDetails item has a queue of events for the thread.

12.2.1.2 WaitForTransaction()

This will then be invoked on the thread::MessageEventHandler Object).

Basically we wait for the condition associated with the thread (via the WaitEventDetails) to
be set. There is a queue of items here. When woken up, we grab the next item and process it
using the event processor. We continue until the event processor indicates we are done.

AAO/DRAMA2 Section 12.3 133 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

An important point here is the management of the DRAMA lock. It is taken throughout,
except whilst waiting for the condition.

12.2.2 ProcessSubsidiaryMessage
This is invoked by the TAction code when a reply to a message to a subsidiary task is
received. Invoked by UFace code under similar conditions. The each have their own
versions, but are very similar (unclear if they need to be different).
It finds entries in _waitEventMap waiting on this transaction and notifies them. This will
cause the condition wait to return.
Before notifying the condition, it will push details of the transaction onto the queue.

12.3 Dealing with shutdown.
Threads complicate shutdowns. If a thread throws an exception that is not caught – the whole
program will be terminated. The std::future class can be used to return the vale of a function
executed as a thread and to transfer exceptions to another thread.
Action threads are implemented via std::async() functions, and therefore are associated with a
future. UFACE threads can be launched by any means, but all examples provided use
std::async().

The drama::thread::TAction and drama::thread::TUface classes both
implement the drama::thread::RunDramaExitNotifier interface.

Each time a UFACE or Action thread is started, it invokes
drama::Task::NotifyOnRunDramaExit(), passing the address of itself to that
method. The drama::Task class maintains a set of such objects. After the DRAMA main
loop has exited, it invokes the RunDramaExitNotifier::RunDramaHasExited()
method, allowing notifications to threads that they should exit immediately.
In both the default implementations, any thread waiting for a DRAMA message (is blocked
in drama::thread::WaitForTransaction()) is notified by sending it an event
with the entry code drama::EntryCode::DramaRunLoopExit and the status
DRAMA2__RUN_LOOP_EXIT.

This will cause drama::thread::WaitForTransaction() to invoke its event
processor’s drama::thread::TransEvtProcessor::Process() method. For
messages other then getting the path, this will results in
drama::MessageEventHandler::ThreadWaitAbort() being invoked, which
will throw an exception.
After the DRAMA main loop has exited and invoked the RunDramaHasExited() method
on each RunDramaExitNotifier, it will invoke the
RunDramaExitNotifier::JoinThreads() method on each
RunDramaExitNotifier, allowing any threads to be joined before the program exits (if
you don’t join a non-detached thread, the program may not shutdown).

12.3.1 Normal Action Thread Shutdown
An action thread is created by running the drama::thread::MyThread() method, a
friend of the drama::thread::TAction class (implemented in threadaction.cpp).

134 of 135 Section 12.3 AAO/DRAMA2

 Last printed 1/3/24 9:01:00 AM

When this completes, it will invoke the method
TAction::ActionThreadComplete() even when it completes with an exception).
That method will signal any waiting subsidiary threads so that they may complete. It will
also signal the DRAMA may loop to wake up by sending a DRAMA2 Signal with a message
type of ThreadSignalType::Complete.
The TAction::ProcessDrama2Signal() method will be invoked in the main thread.
It will do a get() on the std::future associated with the action thread. If the thread
completed with an exception, it will now be delivered to the main thread that converts it to a
DRAMA action error report and status.

12.3.2 Normal UFACE Thread Shutdown
UFACE threads are more complicated when Action Threads, as DRAMA cannot presume
anything about how they have started. To become a UFACE thread, any thread just creates an
object of the drama::thread::TUface class. can then use this in place of a
drama::thread::TAction() object in all of the drama::Path methods that require such
an argument
DRAMA has no control over which type of threads are involved or even if they remain as
DRAMA UFACE threads during their entire run direction. It.
The TUface class destructor will ensure any outstanding message events are orphaned. It also
ensures the object is no longer notified on DRAMA task exit.
In simple examples, where the thread running drama::Task::RunDrama() is now
expected to exit, the thread should invoke drama::thread::SignalDramaToExit()
as it exits.

12.3.3 Possible Flaws

12.3.3.1 UFACE Case.
What happens if in the case above (where DRAMA has been told to exit)
drama::Task::RunDrama() loop wakes up after the signal and before the
drama::thread::TUface destructor has run. It will run
RunDramaExitNotifier::RunDramaHasExited(), which will wake up any thread
waiting on DRAMA messages.
Only flaw here is the lack of joining child threads.
Note that it is up to the application to join the UFACE thread.

Note – the user’s sub-class of drama::Task can implement
RunDramaExitNotifier::JoinThreads() to do this.

12.3.3.2 Action Case
So presume the thread is running and blocked waiting for A DRAMA message. If during
this, drama::Task::RunDrama() is told to exit, then what happens.

RunDrama() will invoke RunDramaExitNotifier::RunDramaHasExited() on
the action object. This will cause all waiting threads in the action to be woken, with the wait
calls throwing an exception. Presume for the moment there is only the one thread involved
(the action thread itself).

AAO/DRAMA2 Section 12.3 135 of 135

 Last modified by Tony Farrell

 1/3/24 09:01

The action thread will now complete with an exception.
The drama::thread::TAction class does re-implement
RunDramaExitNotifier::JoinThreads() such as to join the action thead. But this
does not deal with any child threads of the action thread. The user’s sub-class class of
drama::Task can implement RunDramaExitNotifier::JoinThreads() to do this
before invoking the TAction implementation.

