
 i

D R A M A

The Anglo Australian Observatory’s distributed
instrumentation control system.

Tony Farrell
Anglo-Australian Observatory

Last update 4/8/2023 1:08:00 pm

INCOMPLETE DRAFT INCOMPLETE DRAFT

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 ii

DRAMA

Published by the Anglo-Australian Observatory
P.O Box 296
Epping N.S.W 2121
Australia

Copyright © 1999 by the Anglo-Australian Observatory. This book may be
reproduced by non-commercial institutions only. Commercial institutions should
contact the Anglo-Australian Observatory for further information.

Limits of Liability/Disclaimer of Warranty: The author and publisher of this book
have used their best efforts in preparing this book. The Anglo-Australian
Observatory and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this book or the DRAMA software
environment. We specifically disclaim any implied warranties or merchantability or
fitness for any particular purpose, and shall in no event be liable for any loss of profit
or any other commercial damage, including but not limited to special, incidental,
consequential, or other damages.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 i

Contents at a Glance
CONTENTS AT A GLANCE ... I

TABLE OF CONTENTS ... III

TABLE OF FIGURES .. VIII

TABLE OF TABLES ... IX

TABLE OF EXAMPLES ... X

PART 1 - DRAMA BASICS ... 1

1. DRAMA INTRODUCTION ... 1
2. DRAMA “HELLO WORLD” .. 9
3. DRAMA SUB-SYSTEMS ... 17
4. SDS — SELF DEFINING DATA STRUCTURES ... 21
5. DRAMA OBEY MESSAGES ... 35
6. KICK MESSAGES, MORE ON RESCHEDULING ... 45
7. DRAMA MESSAGE ARGUMENTS .. 49
8.PARAMETERS ... 55
9. MESSAGE/STATUS CODES. ... 65
10. CONTROL MESSAGES .. 71
11. ERROR REPORTING ... 73

PART 2 - BUILDING SYSTEMS ... 79

12.CONTROL TASKS — GETTING PATHS ... 79
13.CONTROL TASKS - SENDING MESSAGES .. 87
14.LOADING TASKS, HANDLING DEATH ... 95
15.CONTROL TASK TIDBIT’S .. 107
16.HANDLING LARGE DATA TRANSFERS .. 117
17.THE C++ INTERFACE ... 119
18.SIGNALS, INTERRUPTS, ALTERNATIVE INPUT SOURCES .. 135
19 DETERMINING DRAMA BUFFER SIZES .. 145

PART 3 – DRAMA USER INTERFACES, USING AND DEVELOPMENT. ... 169

20.THE SIMPLE STANDARD TOOLS ... 169
21.DTCL .. 169
22.DJAVA ... 169
23.DEVELOPING USER INTERFACES – C API ... 169

PART 4 – BUILDING, RUNNING AND RELEASING DRAMA PROGRAMS. 171

24.DRAMA DIRECTORY STRUCTURES ... 171
25.UNIX ... 171
26.VXWORKS (UNDER UNIX) ... 171
27.GENERATING DRAMA MAKEFILES ... 171

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 ii

28.VMS ... 171
29. MICROSOFT WINDOWS .. 171
30.RELEASING DRAMA SOFTWARE ... 171

PART 5 – OTHER DRAMA FEATURES. ... 173
31.IMP STARTUP FILES. ... 173
32.COMMUNICATING WITH ADAM TASKS .. 173

PART 6 - DRAMA’S DOCUMENTATION, BUILDING AND INSTALLING DRAMA. 175

33.DOCUMENTATION ... 175
34.USING THE DRAMA CD ROM ... 175
35.ACQUIRING AND/OR BUILDING DRAMA FOR UNIX/VXWORKS .. 175
36.ACQUIRING AND/OR BUILDING DRAMA FOR VMS .. 175
37.ACQUIRING AND/OR BUILDING DRAMA FOR MICROSOFT WINDOWS .. 175

INDEX ... 177

BIBLIOGRAPHY .. 183

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 iii

Table of Contents
CONTENTS AT A GLANCE ... I

TABLE OF CONTENTS ... III

TABLE OF FIGURES .. VIII

TABLE OF TABLES ... IX

TABLE OF EXAMPLES ... X

PART 1 - DRAMA BASICS ... 1

1. DRAMA INTRODUCTION ... 1
Overview .. 1
Quick Intro .. 1
The Tasking Model .. 2
Event Driven Systems ... 4
Windowing Systems .. 5
Messaging Systems .. 6
DRAMA systems ... 6
Documentation Quick Intro ... 7
Where too now? .. 8

2. DRAMA “HELLO WORLD” .. 9
Overview .. 9
The code ... 9
Include Files ... 10
Modified status convention .. 10
The DRAMA environment — DRAMASTART .. 12
Building “dramahello”. ... 12
Explicit compiling and Linking .. 13

A Makefile for DRAMAHELLO .. 13
A dmakefile for dramahello ... 14

Running DRAMAHELLO ... 15
DITSCMD .. 15

3. DRAMA SUB-SYSTEMS ... 17
Overview .. 17

MESS — The Message Code system .. 17
ERS — The Error reporting system. .. 17
SDS — The Self defining Data System. ... 17
IMP — The Interprocess Message Protocol. ... 18
DITS — The Distributed Instrumentation Tasking System. .. 18
DUL - The DRAMA Utilities Library ... 18
GIT — The Generic Instrumentation Library .. 19
DTCL — The DRAMA TCL Interface. ... 19

Philosophy ... 19
4. SDS — SELF DEFINING DATA STRUCTURES ... 21

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 iv

Overview .. 21
SDS Formats ... 21
SDS Structures ... 21
Using SDS ... 22
Deleting structures and Freeing ids .. 25
Navigation .. 26
External representation ... 26
Other SDS routines .. 27

General utility routines .. 27
SDS File I/O .. 28

The SDS Compiler ... 29
SDS Utility Programs .. 31
The ARG routines .. 32
SDS Summary .. 34

5. DRAMA OBEY MESSAGES ... 35
Overview .. 35
Arranging handling of Obey messages ... 35
Real world requirements ... 38
Rescheduling .. 38
Rescheduling to a different routine .. 40
Multiple Actions .. 40
Simultaneous Actions .. 42

Simultaneous Actions of the same name .. 42
6. KICK MESSAGES, MORE ON RESCHEDULING ... 45

Overview .. 45
Basic Kicking .. 45

Strands of control. .. 47
Rescheduling options .. 47

7. DRAMA MESSAGE ARGUMENTS .. 49
Overview .. 49
Handling Arguments. .. 49
User Command Arguments. ... 49
Output Arguments. ... 52

8.PARAMETERS ... 55
Overview .. 55
Parameter Systems ... 55
The SDP parameter system ... 56

Getting/Putting Scalar and String SDP parameters. ... 59
Getting/Putting Complex SDP parameters. .. 59
Reserved SDP parameter names .. 60
Long Parameter Names .. 60
Get multiple parameter values ... 61
Read only parameters ... 61

Parameter Monitoring ... 61
Parameter monitoring example ... 62

9. MESSAGE/STATUS CODES. ... 65
Overview .. 65
Status/Error codes .. 65
Why use error codes. .. 66
Associating text with error codes. .. 67

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 v

Creating error codes, Error code include files. .. 67
Error code to text associations. ... 68
Other MESS functions. .. 69
Higher level functions. .. 69
VMS Compatibility. ... 70

10. CONTROL MESSAGES .. 71
Overview .. 71
DEFAULT control messages ... 71
MESSAGE control messages ... 71
DEBUG/DUMPATHS/DUMPTRANSID control messages .. 71

11. ERROR REPORTING ... 73
Overview .. 73
Reporting Errors .. 73
Ers Flags. .. 74
Outputting error reports. .. 75
Control of message output. ... 75
sprintf() .. 77
Use in other applications. .. 78

PART 2 - BUILDING SYSTEMS ... 79

12.CONTROL TASKS — GETTING PATHS ... 79
Overview .. 79
DRAMA Control Concepts ... 79

Transaction id’s ... 80
Paths .. 80

Setting up Paths. .. 81
Networking ... 82
Buffer sizes and usage ... 83
Get Path results .. 83
Waiting for completion .. 84
Get Path handler .. 85

13.CONTROL TASKS - SENDING MESSAGES .. 87
Overview .. 87
Message Sending Calls ... 87
Handling message replies .. 88

Reply Argument structures .. 89
Special Reply Handling .. 89

Simple control task example. .. 90
14.LOADING TASKS, HANDLING DEATH ... 95

Overview .. 95
Task Loading .. 95
Task Loading Example .. 98
Task Death ... 104

Subsidiary task death .. 105
Loaded task death ... 105
Parent task death .. 105

15.CONTROL TASK TIDBIT’S .. 107
Overview .. 107
Action Blocking Techniques ... 107
Orphaned Transactions ... 109

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 vi

Handling orphaned transactions ... 110
Creating orphans on purpose ... 111

Buffer Full handling .. 111
Creating non-blocking programs .. 113

Queue Peeking .. 113
Getting and Setting Parameters .. 113

Multiple Parameter Get ... 114
Long parameter names ... 114

Task types and descriptions .. 114
Finding tasks. ... 115
The real tidbit’s .. 115

16.HANDLING LARGE DATA TRANSFERS .. 117
Overview .. 117

17.THE C++ INTERFACE ... 119
Overview .. 119
SDS and Arg C++ Interfaces .. 119

Inherited Status with constructors .. 121
Assignment and Copying ... 121
Importing from SdsIdType variables ... 122
Exporting to SdsIdType variables .. 123
Static and Global variables ... 123
Arg ... 124

Sdp .. 124
Git ... 124

GitBool .. 125
GitEnum .. 126
GitInt and GitReal .. 127

DCPP .. 128
A task communication example .. 129
A simple example of parameter monitoring. .. 131
A more complex example. ... 132
Efficiency Considerations. ... 132

18.SIGNALS, INTERRUPTS, ALTERNATIVE INPUT SOURCES .. 135
Overview .. 135
Signals Etc. default handling ... 135

VxWorks task deletion. .. 135
VMS Task Deletion .. 135
WIN32 Task Deletion .. 136
Unix Signals. ... 136
Turning off the default DRAMA handling. .. 137
Interactions with the Master Task. ... 137

DRAMA and Asynchronous Events. .. 137
Alternative Input sources. ... 143

19 DETERMINING DRAMA BUFFER SIZES .. 145
Overview .. 145
Message Sending Techniques .. 145
DRAMA’s Message Sending Technique ... 146
The Global Buffer Space .. 147
The Message Buffers .. 147
Sending Messages. ... 149
Networking .. 152

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 vii

Buffer Sizes. ... 153
Sizes of Messages ... 155
Buffer Sizes in Practice .. 156

Example calculation of buffer sizes. .. 157
Buffer space allocation problems. ... 158
Running out of Global Buffer Space ... 159
Messages which won’t fit in a buffer. ... 162
Buffer full errors .. 164

Buffer full for replies. ... 166
PART 3 – DRAMA USER INTERFACES, USING AND DEVELOPMENT. ... 169

20.THE SIMPLE STANDARD TOOLS ... 169
Overview .. 169

21.DTCL .. 169
22.DJAVA ... 169
23.DEVELOPING USER INTERFACES – C API ... 169

PART 4 – BUILDING, RUNNING AND RELEASING DRAMA PROGRAMS. 171

24.DRAMA DIRECTORY STRUCTURES ... 171
25.UNIX ... 171
26.VXWORKS (UNDER UNIX) ... 171
27.GENERATING DRAMA MAKEFILES ... 171
28.VMS ... 171
29. MICROSOFT WINDOWS .. 171
30.RELEASING DRAMA SOFTWARE ... 171

PART 5 – OTHER DRAMA FEATURES. ... 173

31.IMP STARTUP FILES. ... 173
32.COMMUNICATING WITH ADAM TASKS .. 173

PART 6 - DRAMA’S DOCUMENTATION, BUILDING AND INSTALLING DRAMA. 175

33.DOCUMENTATION ... 175
34.USING THE DRAMA CD ROM ... 175
35.ACQUIRING AND/OR BUILDING DRAMA FOR UNIX/VXWORKS .. 175
36.ACQUIRING AND/OR BUILDING DRAMA FOR VMS .. 175
37.ACQUIRING AND/OR BUILDING DRAMA FOR MICROSOFT WINDOWS .. 175

INDEX ... 177

BIBLIOGRAPHY .. 183

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 viii

Table of Figures
Figure 1.1 DRAMA Task Structure ... 3
Figure 1.2 A DRAMA System .. 7
Figure 19.1 The Shared Memory Buffers .. 148
Figure 19.2 Allocation of space in task B by task A .. 148
Figure 19.3 Allocation of space in task A by task B. ... 149
Figure 19.4 Sending a message from task A to task B. .. 150
Figure 19.5 Sending replies back to task B. ... 151
Figure 19.6 Allocation by task C in task B. ... 152
Figure 19.7 Tasks A and B on different machines .. 153

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 ix

Table of Tables
Table 4.1 SDS Types and C equivalents. .. 23
Table 4.2 ARG type conversions. .. 33
Table 8.1 SDP parameter types. ... 58
Table 11.1 ERS Flags. .. 74

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 x

Table of Examples
Example 2.1 Hello World ... 9
Example 2.2 Error handling 1 .. 11
Example 2.3 Error handling 2 .. 11
Example 2.4 Error Handling 3 ... 11
Example 2.5 compiling and linking dramahello ... 13
Example 2.6 compiling and linking under VMS ... 13
Example 2.7 dramahello makefile ... 14
Example 2.8 A dmakefile for dramahello .. 15
Example 4.1 Creating SDS structures .. 22
Example 4.2 Getting and Putting SDS structures ... 24
Example 4.3 Deleting SDS structures .. 25
Example 4.4 Freeing SDS ids .. 25
Example 4.5 Finding named items .. 26
Example 4.6 Finding array cells ... 26
Example 4.7 Structure members by Index .. 26
Example 4.8 Structure members by Index .. 26
Example 4.9 Exporting and Importing .. 27
Example 4.10 Other SDS routines ... 27
Example 4.11 SdsList .. 27
Example 4.12 SdsFindByPath .. 28
Example 4.13 SDS file I/O .. 28
Example 4.14 SDS Compiler .. 30
Example 4.16 The ARG routines ... 33
Example 5.1 Hello World ... 35
Example 5.2 Basic message output ... 37
Example 5.3 Program exit .. 37
Example 5.4 Timer Rescheduling .. 38
Example 5.5 Different handler rescheduling .. 40
Example 5.6 Multiple Actions - actions array ... 41
Example 5.7 Multiple Actions - routines .. 41
Example 5.8 Simultaneous Actions ... 42
Example 5.9 Simultaneous Actions - Same Name .. 43
Example 6.1 Kicking HELLO ... 45
Example 7.1 Accessing Arguments .. 50
Example 7.2 Output Arguments .. 53
Example 8.1 Parameters ... 56

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 xi

Example 8.2 Parameter monitoring 1 .. 62
Example 8.3 Parameter monitoring 2 .. 62
Example 8.4 Parameters ... 63
Example 8.5 Canceling a parameter Monitor ... 63
Example 9.1 Error code generation ... 68
Example 9.2 Running Messgen .. 68
Example 9.3 Adding Facilities .. 69
Example 9.4 Translating message codes .. 69
Example 9.5 Use of DitsErrorText ... 69
Example 11.1 Calling ErsRep ... 74
Example 11.2 Add Context to messages .. 74
Example 11.3 Function “helper” .. 75
Example 11.4 Function “helped” ... 77
Example 12.1 High level message sending .. 79
Example 12.1 DitsPathGet ... 81
Example 12.2 Handling DitsPathGet ... 84
Example 13.1 DitsInitiateMessage ... 87
Example 13.2 DitsObey .. 87
Example 13.3 A Simple Control Task .. 90
Example 14.1 DitsLoad ... 96
Example 14.2 A Control Task with Loading ... 98
Example 15.1 A Control task with Action Blocking .. 108
Example 16.1 TBD .. 117
Example 17.1 SDS Error handling in C ... 120
Example 17.2 SDS Error handling in C++ ... 120
Example 17.3 Importing SdsIdType variables ... 122
Example 17.4 Shallow copy into Static SDS id ... 123
Example 17.5 Using Arg C++, creating structures .. 124
Example 17.6 Using Sdp C++ ... 124
Example 17.7 Using GitBool .. 125
Example 17.8 Using GitBool constructor .. 125
Example 17.8 GitBool alternative strings .. 125
Example 17.9 Using GitEnum .. 126
Example 17.10 Using GitInt ... 127
Example 17.11 Using Dcpp .. 129
Example 17.12 Dcpp and Parameter Monitoring ... 131
Example 18.1 ISR Routines .. 139
Example 18.1 Alternative InputSources .. 143

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 1

Part 1 - DRAMA Basics

1. DRAMA Introduction

Overview
DRAMA is an environment for writing distributed real time systems. It provides a C
language API, support libraries, development tools and user interface development
tools. DRAMA provides a consistent look and feel to a networked system which can
run on various diverse architectures and on all systems provides crisp efficient and
reliable communications tools.

This book examines the implementation of DRAMA systems and the various facilities
available in DRAMA. It intended to be a solid introduction to programmers wishing
to write DRAMA programs.

Quick Intro
DRAMA was written by the Anglo Australian Observatory (AAO) computer group.
The AAO is the operator of two large optical telescopes located in New South Wales,
Australia, although DRAMA is not specific to telescope operations.

DRAMA has similarities to the Starlink ADAM environment (Starlink is the U.K.
Astronomy Computing Support Organisation), but is written entirely in C and has
been ported to VMS (both VAX and Alpha), various flavours of Unix (SunOS, Solaris,
OSF, Linux1) and the VxWorks real-time kernel. A port to the WIN32 interface (For
Windows 95 and Windows NT) is well advanced. Ports to other POSIX like systems
should be easy. This document assumes no knowledge of ADAM except when
interfaces between DRAMA and ADAM are discussed.

The basic unit in DRAMA is the TASK. A DRAMA Task is normally implemented as
a separate process within a multi-process operating system. A Task may send or
receive messages of various types to other tasks.

The most fundamental message type is the “OBEY” message An associated name
specifies the name of a user defined “Action” (or command) that the task will
perform. The simplest DRAMA task will set up relationships between “Action”
names and C routines. It then enters a loop where messages are received and

1 For the purposes of this document, Linux is identical to any other form of Unix unless otherwise noted.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

2 1 DRAMA Basics

dispatched to the routine that is the current "handler" for that action. The job of the
implementator of a DRAMA task is normally to provide the action routines

A DRAMA task may have Parametersassociated with it which may be read or written
by other tasks. These parameters provide what is in effect a set of globally accessible
variables. They are used to maintain details about a task that may be of interest to
other task. We have "GET" and "SET" messages which get and set the value of a
named parameter. We also have "MONITOR" messages which allow a task to be
notified if the value of a parameter in another task changes. Task parameters may be
hierarchical structures of considerable complexity (although they are often simple
scalar values).

In addition to an action or parameter name, a DRAMA message may contain an
optional user defined structure of any complexity. This provides a very flexible way
of transferring information around a DRAMA system, from simple integers to
complex images.

User interfaces may be written using X-Windows Xt based widgets (Such as Motif) or
using Tcl/Tk.

A typical DRAMA system will use Unix Windows or VMS machines to run user
interfaces and CPU intensive operations while VxWorks based VME systems
connected via ethernet run the real-time instrumentation. In addition, the real-time
components an often be simulated on the VMS or Unix machines for testing purposes.

The Tasking Model
As mentioned above, the basic concept in DRAMA is the “TASK”. A “TASK” is an
active software object that responds to and initiates messages. The object is normally
implemented as a separate process in a multiple process operating system, such as
UNIX, VMS or VxWorks.

The “Fixed Part” is that part of a task common to all tasks. It access to all the
facilities provided by DRAMA. The “Application Part” is that part provided by the
programmer to implement his specific application. Figure 1.1 shows broad the design
of a DRAMA task.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 3

Figure 1.1 DRAMA Task Structure

There are a couple of points to note here. First, the “Application” part is that part
written by the task programmer. Second, the application does not need to talk
directly to the operating system – if it only uses DRAMA calls, it will be source code
portable to any system on which DRAMA runs. But, any application responsible for
operating hardware will probably need to access the operating system directly.

The task design has been driven by several different requirements-

• A task responds to messages with/without arguments that may be sent from a
number of different sources. The message results in an “action” routine
being invoked within the task to respond to the message. This action outline
is the part supplied by the application programmer. An action has a “name”
by which it is known outside the task.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

4 1 DRAMA Basics

• The task sends a completion message to the sender of the original message
when the action finishes. This should happen only when the thing initiated
by the message has completed. I.e., if the message initiates the moving of a
mechanism, the action completes when the mechanism has completed
moving to the required position, not when the move has been initiated.

• To avoid tying up the CPU, an action should not poll unless unavoidable.

Instead it should block to wait for incoming messages.

• It should be possible to accept additional messages in the same context as the
original message, for example abort messages.

• To make resource contention easier to handle a task should be able to handle

multiple actions simultaneously within the same process context. (This could
be called a form of multi-threading although the threads must control their
time splicing explicitly). For example when controlling an RS232 port it
would be dangerous to allow multiple processes to write at will to the port. It
is easier and safer to send all messages intended for that port to one process
which can then manage access to the RS232 port.

• The tasking system should not rely on specialized operating system

techniques which may dramatically restrict portability. We currently
require that it be ported to VAX/VMS, UNIX, Microsoft Windows and
VxWorks. As long an underlying message system can be provided, it should
be possible to run it on a machine.

• A task should be able to send messages to other tasks and user interfaces

should be able to be written without internal knowledge of the tasking
system.

• It should be possible for messages, other than completion messages, to be

sent to the initiator of an action. For example, it should be possible to output
informational and error messages .

• The sending of messages should not cause a task to block waiting only for a

response from the target task. This would stop the task accepting messages,
such as abort messages, from other tasks.

Event Driven Systems

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 5

The model which arises from the above requirements is known as an “Event Driven
System”. This type of system is on in which most or all work is done in response to an
“Event”. For example, a car is an event driven system. Some of the events are

Event: Ignition key is turned
Response: Power turned on. Starter motor operates

Event: Accelerator pedal is pressed
Response: More fuel to the engine

Event: Break pedal pressed
Response: Break lights on, engage breaks.

Various software systems work in an event driven way. For example

Windowing Systems The basic events are the direct result of user interactions, such

as mouse and keyboard events. Other events may be
generated automatically, such as “Expose” events.

Operating Systems Normally interrupt driven

Networking Systems Respond to notification of incoming messages and requests to

send messages.

Windowing Systems
For many programmers, their introduction to event driven systems was when they
first had to write a program for a windowing system.

Most windowing systems work in the same way - X Windows (including Xt, Athena,
Widgets, Motif, Openlook etc.), Microsoft Windows, Tcl/Tk, Mac OS - all use the
same basic approach. Since DRAMA uses techniques taken from windowing systems
and DRAMA applications must often interact with such systems, we will have quick
look at the basic technique.

The basic model of Windowing system applications is

• Initialise Packages
• Associate user defined functions with various events
• Initiate creation of windows etc.
• Enter a loop, usually provided by the windowing system. This loop normally

responds at a basic level to incoming events, such as keyboard events and
mouse movements.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

6 1 DRAMA Basics

• At appropriate times, the system supplied loop will invoke the “callback”
routines specified earlier

The major job of the programmer is to supply the “Callback” functions, which
implement the functionally of the application.

A “Callback” function generally has access to information about the event which
triggered it.

Generally, the programmer can associate an item of data (often called “Client Data”)
with events. This allows the same “Callback” function to be used in different cases or
for different objects. It can also be used to allow what would otherwise have to be
“Global” data items to be passed in a re-entrant fashion to callback routines.

Messaging Systems
One form of event found in most operating systems is the “Message Arrival” event.
As a generalisation, all events can be considered “Messages”. This leads to an “Event”
driven system where the events are “Messages”.

Such messages may be generated explicitly or in response to normal system events
such as key press and mouse events.

DRAMA is an example of such message event driven systems.

DRAMA systems
A DRAMA system consists of one or more DRAMA tasks distributed as required
across one or more machines possibly of significantly different architectures.
DRAMA provides a message system to allow the tasks to communicate whilst hiding
architecture specific details and at the same time providing very efficient inter task
communications. This system design allows you to run tasks on the most appropriate
machine – say user interfaces on Unix under X windows or on a PC running
Microsoft Windows whilst real time programs are run on a VME real time system
running VxWorks. DRAMA systems typically allow tasks to be added and removed
as need to support different configurations and new equipment. Figure 1.2 gives an
example of such a system.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 7

Figure 1.2 A DRAMA System

In figure 1.2, distributed across various machines, DRAMA makes the entire system
look like one machine as much as possible. As an example of how this might be
useful – the “CPU Intensive task” could be placed anywhere on the network where
the required CPU is available.

In addition to providing the message system, DRAMA hides as much as possible the
operating system specific interfaces often required by DRAMA task. It does this by
providing a common interface. As a result, many DRAMA programs can be built
from common source under all supported operating systems and machines.

Documentation Quick Intro
A later chapter gives full details on how to find and use the documentation, but here
is a quick intro. There is a web site with html and postscript documentation. This
can be found at http://www.aao.gov.au/drama/html/dramaintro.html.

If you have a complete Unix DRAMA installation of DRAMA or a DRAMA CD ROM,
then you have a local copy of the documentation. The html sub-directory contains
the html pages, start by opening the dramaintro.html. The docs sub-directory

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

8 1 DRAMA Basics

contains latex source and postscript versions of the latex files. Finally, the man sub-
directory contains man pages for the sub-routine and command descriptions (also
available in html). You may need to add this directory to you MANPATH
environment variable to access these normally.

Where too now?
The rest of this book attempts to introduce you stage by stage to the various features
of DRAMA. Part one is about basic tasks, the hardware control tasks in the above
examples. Part 2 is about “Control Task” – use to coordinate tasks. Part 3 is about
user interface development. Part 4 introduces DRAMA system building and release
features. Part 5 contains an assortment of chapters which don’t fit anywhere else – to
example all the other features found in DRAMA. Finally, Part 6 works through the
documentation and how to find, build and install DRAMA.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 9

2. DRAMA “Hello World”

Overview
A tradition in computer science is the “Hello World” program. This is the simplest
program you can write in a Language or API which can output the string “Hello
World” to the user. DRAMA does have such a program and we shall have a look at
the program itself, how to build it and how to run it. Later chapters in this book will
expand on this program to demonstrate other DRAMA features.

The code
The main routine of a basic DRAMA program consists of

1 DRAMA Initialisation (DitsAppInit()). The arguments to this are the
name the task is to be known as, and several other arguments to be described
later.

2 Association of message names with handlers (DitsPutActions()). It
takes as its second argument the address of a structured array. This names
the messages and specifies the routines to be invoked when messages of the
given names are received. The first argument is the size of the array which
can be obtained using the macro routine DitsNumber()

3 Invocation of the main loop (DitsMainLoop()).
4 Shutdown (DitsStop()). We supply to this routine the same name

supplied as the first argument to DitsAppInit(). This is done because
the name may be used in error messages generated by DitsStop() and
may not be saved by DitsAppInit() if an error occurs in that routine.
The value returned by this DitsStop() is appropriate for returning to the
operating system using exit() or return from the main function.

Example 2.1 shows the actual code.

Example 2.1 Hello World
#include "DitsTypes.h" /* Basic Dits types */
#include "DitsSys.h" /* Initialisation functions */
#include "DitsMsgOut.h" /* MsgOut */
#include "DitsFix.h" /* For DitsPutRequest */

#define BUFSIZE 20000 /* Global buffer size */
#define TASKNAME "DRAMAHELLO" /* Name of this task */

static void Hello(StatusType *status);/* Prototype of handler */

extern int main(void)
{

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

10 2 DRAMA “Hello World”

 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO"} };

/*
 * Initialise DRAMA, define the actions we support.
 */
 DitsAppInit(TASKNAME, BUFSIZE,0, 0, &status);
 DitsPutActions(DitsNumber(Actions), Actions, &status);
/*
 * Enter the Dits main loop.
 */
 DitsMainLoop(&status);
/*
 * Shutdown, returning an appropriate error code.
 */
 return (DitsStop(TASKNAME, &status));
}
/*
 * Define the HELLO action handler routine
 */
static void Hello(StatusType * const status)
{
 if (*status != STATUS__OK) return;

 MsgOut(status, “Hello World");
 DitsPutRequest(DITS_REQ_EXIT, status);
}

The routine Hello() is the message handler routine — the action handler. In this
case there are only three lines. We will come back to the first line later. The routine
MsgOut() is the one which actually outputs the message. The call to
DitsPutRequest() with the argument DITS_REQ_EXIT causes the program to
exit once the message is processed.

Include Files
All DRAMA routines are prototyped in include files. The documentation for each
routine indicates which include files must be included before using that routine. The
include file “DitsTypes.h” defines all the general DRAMA types and symbols and
should be included first by all programs using DRAMA.

Modified status convention
DRAMA uses a convention for the handling of error conditions known as the
“Modified status convention”. All routines which take arguments will have a “status”
argument. This argument is a pointer to a variable of type StatusType. Normally,
if the value of the variable is not equal to zero (STATUS__OK) then the routine

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 11

returns immediately. The routine can set the status to a non-zero value when it
encounters an error.

In environments without exceptions, this convention makes for simpler code. For
example, you can replace the following code

Example 2.2 Error handling 1
if (funct1(a, b, c) != ERROR) {
 if (funct2(d, e, f) != ERROR) {
 if (funct3(g, h, i) != ERROR) {
 if (funct4(a, d, i) != ERROR) {
...
 }
 }
 }
{

by something like this

Example 2.3 Error handling 2
funct1(a, b, c, status);
funct2(d, e, f, status);
funct3(g, h, i, status);
funct4(a, d, i, status);

A clear advantage in many cases. There are though some situations where this
convention can get you into trouble. For example, consider

Example 2.4 Error Handling 3
funct1(&bytes, status)
if ((space = malloc(bytes)) == 0)
 *status = MALLOC__ERROR_STATUS;
funct2(space, status);

Consider the case of status being bad when funct1() is invoked. Bytes may not
then be initialised, causing malloc() to fail. The failure of malloc() causes
status to be set, but this overrides the previous value of status. When the error is
reported to the user, they will get an incorrect indication of the original error. The
solution here is to check the value of status before calling malloc() and not call
malloc() if status is already bad.

If a routine set status to particular values when certain errors occur, then the caller
can chose to handle that error. For example, if a routine fails due to not finding a file,
the calling routine may choose to create the file rather then regard it as an error.
While a failure due to insufficient permission or out of space may be considered fatal
and the caller will not attempt to handle these errors.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

12 2 DRAMA “Hello World”

Additionally, the use of particular bad status values help locate where things have
gone wrong. If a particular package were to use unique status values in ever case it set
bad status, you can quickly locate in the source code just where a program where a
program struck an error.

To support this technique, DRAMA provides support for the generation of unique
error codes and the association of text strings with those codes when they are output
by user interfaces. This support is provided by the “messgen” program and the
“Mess” routines, described later.

The DRAMA environment — DRAMASTART
When building and when running DRAMA programs it will be necessary to locate
the include files, libraries and executables which make up DRAMA. This is done by a
command known generically as “DRAMASTART”.

The exact form of this command varies depending on the operating system
environment. For example

• Under Unix, it is normally “~drama/dramastart” where “~drama” is the
location of DRAMA. If the account “drama” does not exist you must replace
it with the name of the directory containing DRAMA. Execute this program
and follow it by the command “source $DRAMA/drama.csh” if your shell
is compatible with csh or “. $DRAMA/drama.sh” (first character is period)
if your shell is compatible with sh.2

• For building for VxWorks targets, use “~drama/dramastart vw68k”
where the “vw68k” started for VxWorks 68K architecture.

• For VMS, normally “DRAMASTART” is sufficient, assuming this symbol has
been correctly defined when DRAMA was installed.

The DRAMA environment is almost certainly required to build DRAMA programs. It
is normally only necessary at run time to make it easier to locate DRAMA programs.

Building “dramahello”.

2Is is quite easy to make the second part of this automatic. For example if you are using csh or tcsh, put the
following code in your .cshrc file.

if ($?DRAMA) then
 source $DRAMA/drama.csh
endif
alias drama ~drama/dramastart

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 13

There are three ways to build a simple DRAMA program. The most basic approach is
to explicitly invoke the compiler and linker. In this simplest of programs this is quite
easy and we will demonstrate how it is done. But as your programs increase in
complexity, you will want to use a Makefile so we will provide a Makefile
appropriate for building dramahello. An additional technique allows you to create
portable build description files which will generate Makefile’s appropriate for a
given target

Explicit compiling and Linking
The key to compiling and linking a DRAMA program is finding the DRAMA include
files and libraries. Assuming your have run the “DRAMASTART” command
appropriate to your environment then environment variables3 will exist which can
locate these files. In particular, the environment variable “DITS_DIR” can be used to
locate the libraries associated with the DRAMA package known as DITS whilst
“DITS_LIB” can be used to locate the libraries.

The basic DRAMA program will use DITS, and hence everything DITS depends on.
As a result the DITS package provides assistance which locates everything needed to
build such programs. The unix command “$DITS_DIR/dits_cc” will output a
string of macro definitions and include file specifications which is appropriate for
compiler command lines. Similarly, “$DITS_LIB/dits_link” is appropriate for
linking commands. Example 2.5 shows how you use these commands to build
dramahello under unix.

Example 2.5 compiling and linking dramahello
cc -o dramahello dramahello.c `$DITS_LIB/dits_cc` \
 `$DITS_LIB/dits_link` -lm

Not that the quotes being used here are backquotes (`), not forward quotes ('). Of
course you can split this into separate compile and link commands in the normal way.

Under VMS, the approach is a bit different. The logical name “DRAMA_INCLUDES:”
is used to locate the include files whist the command “DITS_LINK” is used for
linking, as per example 2.6.

Example 2.6 compiling and linking under VMS
cc/include=drama_includes dramahello.c
dits_link dramahello

A Makefile for DRAMAHELLO

3Under VMS, logical names are used in place of environment variables.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

14 2 DRAMA “Hello World”

The Makefile for the DRAMAHELLO program will of course just reflect the above
commands. Example 2.7 shows such a makefile appropriate for using the gcc
compiler under solaris 2.

Example 2.7 dramahello makefile
Set up include directory list.
INCLUDES= `$$DITS_LIB/dits_cc`

C compiler options
CCOPTIONS = -g -pipe -ansi -Wall

Command macro
CC = gcc
RM = rm -f
AR = ar rv

CFLAGS = $(CCOPTIONS) $(INCLUDES)

The list of libraries to link against

LIBS= `$$DITS_LIB/dits_link` -lm

all : dramahello

dramahello : dramahello.o
 $(RM) $@
 $(CC) -o $@ dramahello.o $(LIBS)

clean ::
 $(RM) dramahello *.BAK *.bak *.o core
 $(RM) errs ,* *~ *.a .emacs_* tags

A dmakefile for dramahello

The above Makefile is directed towards a simple solaris Unix system. If you want
to also build this program under VMS you will need an equivalent (but very different)
descrip.mms file. If you want to build this program for an embedded system such
as VxWorks, you will need another Makefile. You may event need to modify this
Makefile for different versions of unix. The result is a maintenance nightmare.

A solution to the problem is required by DRAMA itself, which is ported to many
operating systems. The solution provided is to use the X Windows configuration
program known as “imake”. “imake” is actually a system as well as a program. The
system combines a set of configuration files which describe the abilities of an
operating system with a make style description of how to build a particular program.
The description file is run through a C pre-processor to generate a Makefile. You do
not need to know more about how this works. Just realise that by writing a
“dmakefile” for your program you can easily generate a Makefile for any target
supported by DRAMA. The easiest way to create a dmakefile is to copy one which

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 15

does basically the job you want (which is generally how people create a Makefile).
Example 2.8 is a dmakefile for the dramahello program.

Example 2.8 A dmakefile for dramahello
#BeginConfig
INCLUDES=DramaIncl IDir(DUL_DIR)
USERCCOPTIONS = AnsiCFull() /* Enable Full Ansi C */
#EndConfig

NormalCRules() /* Include normal c rules */

DramaProgramTarget(dramahello, Obj(dramahello) ,,,)

To generate a Makefile for this dmakefile, execute the command “dmkmf”. After
executing this command, you will find a Makefile in the directory. If you wish to
generate a descrip.mms file for a VMS system, you need to execute “dmkmf -t
vaxvms” for a VAX or “dmkmf -t alphavms” for alpha VMS machine. You need
to execute this command on a Unix machine with DRAMA installed.

Note that although dmakefiles are used extensively by DRAMA itself, you need
not use them yourself and they are only recommended where you require portability
of your DRAMA software to machines with drastically different build procedures eg.
VMS and VxWorks.

Running DRAMAHELLO
Running DRAMAHELLO is quite simple. Under Unix, just run it in the background.
(“./dramahello &”). Under VMS again just run it (“run disk:[directory
spec]dramahello”), normally in a spawned sub-process.

Under VxWorks and other, you have several options and details are somewhat
environment specific. Basically you need to load the program into VxWorks memory
along with the DRAMA infrastructure you will need to run it. I normally do this by
first loading the VxWorks version of “DRAMASTART” (“ld
</dramalocation/drama.vw68k”). I then load the drama libraries object file
(“dld $DITS_DIR/libdits.o”) and then the program object file (“dld
dramahello.O”). You can then run dramahello using the VxWorks “sp” command
(“sp dramahello”, assuming you have changed the entry point from main()
to dramahello()).

DITSCMD
“DITSCMD” is a simple program for sending messages to a DRAMA task. It allows
you to test simple programs and can be used in scripts running DRAMA programs.
We can use it to test the DRAMAHELLO program.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

16 2 DRAMA “Hello World”

Under Unix, just type “ditscmd DRAMAHELLO HELLO”.

VMS is very similar. Type “ditscmd "DRAMAHELLO" "HELLO"” Note the use of
quotes about the arguments to “ditscmd”. This is because otherwise VMS will convert
these strings to lower case. Since DRAMA task and command names are case
sensitive, we need to prevent this.

VxWorks gives you two possibilities. You can just type “ditscmd "DRAMAHELLO
HELLO"” which runs ditscmd as part of the VxWorks shell. Note that all the
arguments to ditscmd are passed as one string.

Alternatively, and somewhat safer is to run ditscmd in an independent task with “sp
ditscmd, “DRAMAHELLO HELLO"” Note the comma between the command
name (ditscmd) and its arguments. This is because both are arguments to “sp”, and
VxWorks requires arguments to be separated by a comma.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 17

3. DRAMA sub-systems

Overview
The core of DRAMA consists of a number of software packages, known as sub-
systems. These sub-systems are documented independently and several of these can
be used stand alone. Generally the names of routines and commands found in a
package start with a prefix related to the sub-system name, making it easy to find the
documentation. The following sub-systems are provided.

MESS — The Message Code system

The MESS package provides a portable way of generating and using message (error)
codes. These message codes associate text with an integer in a similar way to the C
errno variable values and VMS message codes. We often talk about error codes
interchangeably with message codes.

ERS — The Error reporting system.

ERS is the second part of the error reporting system. It provides routines for
reporting textual error messages to the user in a highly controlled way. An important
part of this is a facility for delayed error reporting. This allows lower level code to
report basic error information while the upper level code can add context information
or chose not to report the error.

For example, a higher level routine may ask a lower level routine to open a file. If
this file does not exist the lower level routine will report such a message and return
with bad status. The upper level routine may decide to fail on this error, after adding
details about why it was opening the file, or it may instead want to ignore the open
failure by creating the file. In the later case, it annuls the error messages reported by
the lower level code.

SDS — The Self defining Data System.

SDS allows complex self defining data structures to be built and then transferred as
byte streams. It hides details of converting basic data formats (integer byte order,
floating point format etc.) as data is transferred between machines.

SDS structures can contain data of any complexity and size, images for example. The
Self defining nature means programs can look into a structure to determine its details
without extra information needing to be transferred or built into the program.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

18 3 DRAMA Sub-Systems

SDS structures are well suited to moving small or large amounts of data about in
heterogenous computer networks. These structures can be sent anywhere a byte
steam can be (sent in messages, written to files etc.)

The ARG library is also part of SDS. This library provides routines for creating and
accessing SDS structures to be used as command arguments. The resulting package
provides simpler access to many common SDS operations.

IMP — The Interprocess Message Protocol.

IMP is the underlying DRAMA message protocol. It will move data between two
processes on the same machine as fast as possible whilst providing almost seamless
communication between programs on different machines. There is no absolute limit
to the size of messages which can be sent and it has been use to send 170Mb images
between machines. It is also responsible for reliability issues such as ensuring
notification of programs and computers failing. Additionally, it provides a remote
task loading facility.

The IMP sub-system is normally hidden from the application programmer by the
upper levels of the DRAMA software.

DITS — The Distributed Instrumentation Tasking System.

The DITS sub-system draws the above sub-systems together to implement the basic
structure of a DRAMA task. It provides all the basic facilities of DRAMA such a
message sending and receiving. It will attempt to provide the most flexible and
efficient access to these facilities possible, at the cost of simplicity at times. Other
packages make use of some of these facilities to provide simpler interfaces to the most
common operations.

Two other related libraries are part of the DITS sub-system. The SDP implements a
simple parameter system built largely on SDS. Details of its use will be given later in
this book.

The DUI library provides a wrap around of the rather complex facilities provided by
DITS for implementing user interfaces. Almost all DRAMA user interface programs
are written using this package instead of the underlying DITS routines.

DUL - The DRAMA Utilities Library

The DUL library provides wrap arounds of various common operations in the lower
levels. Operations such as sending messages to other tasks are presented in a simpler
(but less flexible or less efficient) interface.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 19

The DCPP library is also part of this sub-system. DCPP implements a C++ interface to
the messaging operations in DITS.

GIT — The Generic Instrumentation Library

The poorly named GIT library combines two functions. The first is support for the
AAO’s generic instrumentation software. This allows us to build tasks with consistent
interfaces in an object-oriented way. A task “inherits” basic implementations of a set
of standard commands. These functions can be used outside the AAO but often a
local style will prevail, in which case they can be used as an example of one approach
to writing DRAMA software.

The GIT library also provides various utilities functions. These functions really
belong in DUL but this library predates that one.

DTCL — The DRAMA TCL Interface.

The DTCL sub-system provides an interface to the TCLi scripting language and it’s
Windowing extension Tk. TCL/Tk is the easiest way to build user interfaces and test
scripts in DRAMA. The two systems are well matched.

Philosophy
The structure of the DRAMA sub-systems was designed to provide reliability, easy
maintenance and efficiency. It provides core routines which implement basic
operations in a flexible and efficient way.

As a result of these quests, it is sometimes found that the interfaces to the basic
operations do not match well to the common operations they are used for. For
example, the operation to send a message to a task allows multiple messages to be sent
at the same time. The requirements of sorting out responses from the multiple
messages sent make the interface more complex then the case of sending a single
message normally requires. As a result we also provide routines to implement the
most common sequences of operations in a simple way. These routines may not be
the most efficient or flexible way of doing things but will suffice in most cases.

Whilst we have provided almost all of the core operations which will ever be
provided, more interfaces at the higher levels will be provided as experience tells us
what is required.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 21

4. SDS — Self defining Data Structures

Overview
The SDS sub-system is fully documented in its own manualii (see
http://www.aao.gov.au/drama/doc/ps/sds.ps). We will provide an abbreviated
introduction to SDS and its use in DRAMA so as to provide a foundation for future
chapters.

SDS structures are used in DRAMA to represent any structure which

• May be read or written by different a task or program from the one that
created it. This allows the destination program to be run transparently on a
different machine, using different bytes order and floating point formats.

• May have its structure changed dynamically or where the structure varies

depending on the situation.

SDS is used in all DRAMA messages and is used by many DRAMA applications as a
file format. It is also used by some DRAMA applications to manage dynamically
changing structures such as menus.

While used heavily by DRAMA, SDS is independent of DRAMA and is often used in
non DRAMA programs.

SDS Formats
There are two SDS formats, When you create SDS structures, you create them in
SDS’s “Internal format”. The details of this format are hidden from the user and
accessed only using the supplied routines. This format allows structures to be created
and manipulated

To move SDS structures about, you use the “External Format”. The external format is
a well defined representation of SDS structures in a byte stream. The structure of
these items cannot be modified once created although you can change the values.
The external format allows SDS structures to be moved anywhere a byte stream can
go.

SDS Structures

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

22 4 SDS

An SDS structure consists of named items. The name of an item cannot exceed 16
ASCII characters in length. Individual items may be a structure, a scalar item or an
array of either structures or scalars.

There are scalar types defined to represent 8, 16, 32 and 64 bit integers, both signed
and unsigned, normal length and double length floating point values. An additional
scalar type is used for characters.

SDS arrays may have up to 7 dimensions with no restriction on the size of each
dimension.

Using SDS
All access to SDS items, either structured or scalar, is via an SDS id. The id is a simple
scaler item which can be passed to a routine or program efficiently. A new SDS id is
returned when you create an SDS item. In addition, many other functions create SDS
ids. Examples here include the functions used to find named items in a structure and
those used to index into structured arrays. As a result many SDS ids may point to
various parts of the one SDS structure.

SDS structures are created using the SdsNew() function. Example 4.1 shows how it
can be used to create a simple structure.

Example 4.1 Creating SDS structures
#include <stdio.h>
#include "status.h"
#include "sds.h"

int main(void)

{
 SdsIdType topid; /* Top level identifier */
 SdsIdType id1; /* Identifier of first component */
 SdsIdType id2; /* Identifier of second component */
 SdsIdType id3; /* Identifier of third component */
 unsigned long dims[2]; /* Array dimensions */
 long status; /* Inherited status variable */
/*
 * Initialise status variable
 */
 status = STATUS__OK;
/*
 * Create the top level object
 */
 SdsNew(0, "Top", 0, NULL, SDS_STRUCT, 0, NULL,
 &topid, &status);
/*
 * Create the first component - a primitive scalar integer
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 23

 SdsNew(topid, "Comp1", 0, NULL, SDS_INT, 0, NULL,
 &id1, &status);
/*
 * Create the second component - a two dimensional double array
 */
 dims[0] = 10;
 dims[1] = 20;
 SdsNew(topid, "Comp2", 0, NULL, SDS_DOUBLE, 2, dims,
 &id2, &status);
/*
 * Create the third component - a structure array - also
 * illustrate the setting of the extra information field
 */
 dims[0] = 4;
 SdsNew(topid, "Comp3", 17 ,"A Structure Array",
 SDS_STRUCT, 1, dims, &id3, &status);
/*
 * Check everything is OK
 */
 if (status != STATUS__OK)
 printf("Error creating structure - %ld\n”, status);

 return(0);
}

The top level item of this structure is “Top”. The id in the variable topid refers to
it. Note that when Top was created, zero was passed as the first argument of the call
to SdsNew(). Doing this indicates to SdsNew() that you want to create a new top-
level item. The resulting id is then passed as the first argument of the subsequent
calls to create the child items. The first item created in this structure is a simple
integer item. The second item created is an array of 32 bit integers (or the nearest
representation on the platform in question).

The third item created is a structure array. You can then create the individual items
in this array, (which may have different structures) or you can fill this array with a
copies of a given item. See the SDS manual for full details of the arguments to
SdsNew().

In calls to SdsNew(), the following SDS Types are available

Table 4.1 SDS Types and C equivalents.

SDS Type Details C equivalent type
SDS_BYTE used to represent signed byte size

integers.
signed char

SDS_UBYTE used to represent unsigned byte size
integers.

unsigned char

SDS_SHORT 16 bit signed integers short
SDS_USHORT 16 bit unsigned integers unsigned short

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

24 4 SDS

SDS_INT 32 bit signed integers INT32
SDS_UINT 32 bit unsigned integers UINT32
SDS_I64 64 bit signed integers INT64
SDS_UI64 64 bit unsigned integers UINT64
SDS_FLOAT single length floating point float
SDS_DOUBLE Double length floating point double
SDS_CHAR Use to represent byte sized characters char

Note the difference between byte sized integers and the character type. The later
allows for conversion between different character sets and accounts for different sign
conventions for “char” types under different C compilers. Also note the use of special
types for the 32 and 64 bit integers. These items are typedef-ed to the appropriate
type for the compiler.

Having created a structure, we need to be able put data into it and extract it again.
We put data using the SdsPut() function. You can put data into individual items or
use an equivalent C structure to put the entire structure in one operation. An
equivalent C structure is one with an equivalent set of item types in the same order.
Names of items in the C structure are not significant, just the layou. You use
SdsGet() to retrieve the values from a structure. Consider example 4.2.

Example 4.2 Getting and Putting SDS structures
#include <stdio.h>
#include "status.h"
#include "sds.h"
/*
 * Define a C structure containing 4 items of different types
 */
typedef struct {
 char c1;
 double d1;
 INT32 i1;
 float f1;
} block;

extern int main(void)
{
 StatusType status;
 SdsIdType topid, id1, id2, id3, id4;
 unsigned long actlen;
 block blockl = {'Q', 1.23456789, 9999, 3.1415926};
 block block2;
/*
 * Create an SDS structure equivalent to the C structure
 */
 status = STATUS__OK;
 SdsNew(0, “test”, 0, NULL, SDS_STRUCT, 0, NULL,

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 25

 &topid, &status);
 SdsNew(topid, “charl”, 0, NULL, SDS_CHAR, 0, NULL,
 &id1, &status);
 SdsNew(topid, “doublel”, 0, NULL, SDS_DOUBLE, 0, NULL,
 &id2, &status);
 SdsNew(topid, “intl”, 0, NULL, SDS_INT, 0, NULL,
 &id3, &status);
 SdsNew(topid, “floatl”, 0, NULL, SDS_FLOAT, 0, NULL,
 &id4, &status);
/*
 * Write the C structure (block1) into the SDS structure
 */
 SdsPut(topid, sizeof(block),0, &blockl, &status);
/*
 * Read from the SDS structure back into the C structure block2
 */
 SdsGet(topid, sizeof(block),0, &block2, &actlen, &status);
/*
 * Print contents of block2
 */
 printf(" %c %g %ld %f \n”, block2.c1, block2.d1,
 block2.i1, block2.f1);
 return(0);
}

In this example we create an SDS structure equivalent to the C structure type
“block”. We then write the contents of one of these blocks to the SDS structure
using SdsPut(). We retrieve it into a second structure using SdsGet() and then
print the results.

Deleting structures and Freeing ids
Internal SDS structures should be deleted when you are finished with them. This
retrieves all the allocated resources (memory) associated with them. For this you use
the function SdsDelete().

Example 4.3 Deleting SDS structures
SdsDelete(id, status)

This call will delete the structure and all child structures. You can also delete part of
a structure by specifying the id of the part you wish to delete.

SDS ids also have resources associated with them and should be free-ed when you are
finished with them. This is done using SdsFreeId().

Example 4.4 Freeing SDS ids
SdsFreeId(id, status)

Normally a call to SdsDelete() is followed by a call to SdsFreeId() but most
calls to SdsFreeId() are not preceded by SdsDelete(). This is because you will

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

26 4 SDS

often have many ids pointing to various parts of the same SDS structure. Each of
these ids need to be free-ed.

Navigation
SDS provides several functions to navigate around SDS structures. To find a named
item in a SDS structure, use SdsFind.

Example 4.5 Finding named items
SdsFind(parent_id, name, &id, status)

In arrays of scalar items you can use SdsGet() to get anything from individual items
up to the entire array. When dealing with arrays of structures, you need to use
SdsCell(), which returns the SDS id of a specified array cell.

Example 4.6 Finding array cells
SdsCell(parent_id, nindices, indices, &id, status)

Additionally, you can step through the members of a structure using SdsIndex().

Example 4.7 Structure members by Index
SdsIndex(parent_id, index, &id, status);

Note that all these calls return new SDS ids which will need to be free-ed when you
are finished with them.

To find out details of an item, use SdsInfo(). This returns the name, type and
dimensions of an SDS item.

Example 4.8 Structure members by Index
SdsInfo(id, name, &code, &ndims, dims, status);

External representation
To write an SDS structure to a buffer in it’s external format, use SdsExport(). The
buffer must at least the size returned by SdsSize() for the structure. Exporting is
the operation used to allow an SDS structure to be moved in a byte stream.

To import an SDS structure from an byte buffer into SDS internal format, use
SdsImport(). This routine creates a new internal item of the same structure layout
and containing the same data. It returns the id of this structure. You would normally
only do this if you want to modify the structure’s layout. If all you want to do is read
or write the data of the structure, then you can use SdsAccess() which returns an

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 27

SDS id which allows you to access the structure in the buffer directly. No internal
item is created in this case - the result is known as an External item.

Example 4.9 Exporting and Importing
SdsSize(id, &size, status);
SdsExport(id, length, &buffer, status);
SdsImport(buffer, &id, status);
SdsAccess(buffer, &id, status);

You should remember that not all operations are possible on external items. Nothing
that modifies the structure format is allowed.

Other SDS routines
Several other SDS routines are available. SdsCopy() allows you to make a copy of
an item. It returns the id of the new item which is always an internal item (the
source may be external).

SdsInsert() is used to put a new item into structure while SdsInsertCell()
similarly allows you to insert a cell into an array of structures.

Example 4.10 Other SDS routines
SdsCopy(id, &newid, status);
SdsInsert(parent_id, id, status);
SdsInsertCell(array_id, nindicies, indices, id, status);

In addition to these routines, several other routines are available which are
implemented on top of the above routines. These are know as the SDS utility
routines. They also are prefixed by “SDS”.

General utility routines

To assist in debugging programs, a simple utility routine can be used to write the
contents of a structure to the standard output device. This is the routine
SdsList(). The result is often abbreviated to avoid flooding the output device with
data but gives a good indication of the structure of the item and its contents.

Example 4.11 SdsList
/* First replace the printf line in example 4.2 with */
 SdsList(topid,&status);

/* Then run the program. The output is now */
test Struct
 charl Char "Q"
 doublel Double 1.23456789
 intl Int 9999
 floatl Float 3.14159

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

28 4 SDS

The routine SdsFindByPath() is similar to SdsFind, but allows a reference to
an item at any depth using a special name format which separates component names
by a period. SdsFind() only allows references to items at the next level down in
the specified item. Note that the use of a period as a separator is purely a convention
which is not enforced by SDS. To ensure your structures work with
SdsFindByPath() don’t use periods in your item names.

Example 4.12 SdsFindByPath
/* Replace the printf line in example 4.2 with */
 SdsFindByPath(topid, "doublel", &id1, &status);
 SdsList(id1,&status);

/* Then run the program. The output is now */

doublel Double 1.23456789

SDS File I/O

As mentioned earlier, SDS’s external representation is a byte stream that can be
written to a file using normal file I/O. You can do this yourself but in general you
will want to use the utility routines provided by SDS. The routine SdsWrite() will
write a SDS structure to a file. The routine SdsRead() will read a structure from
file. The later routines returns the id of an external structure. If you want to modify
this structure’s structure, then you will need to copy it to get an internal SDS item.
Since SdsRead() needs to allocate a buffer to read the file into, you should release
this buffer when you are finished with it by calling SdsReadFree(). This is
normally done just before calling SdsFreeId.

Example 4.13 SDS file I/O
/* Reading a Sds structure from a file */
 SdsIdType id=0;
 SdsRead(“file.sds”, &id, status);

 /* Use the id - now it refers to an external SDS structure*/
 …

 /* Now clean up */
 SdsReadFree(id, status);
 SdsFreeId(id, status);

 /* Writing an Sds structure to a file */
 /* Create the structure */
 …

 /* Write to a file */
 SdsWrite(id, “file.sds”, status);

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 29

The SDS Compiler
Example 4.2 demonstrated the simple mapping between SDS structures and C
structures. It is easy to define an SDS structure which can be used to store a given
simple C structure. But once the C structure you wish to represent becomes more
complicated, it becomes tedious to define the SDS equivalent. The SDS compiler
provides the solution. It will take a string/file defining a C structure and produce the
sequence of calls necessary for defining an equivalent SDS structure.

The SDS Compiler has two forms. The first form is provided as a run time function
call. You pass a string defining a C structure to the function SdsCompile() and it
returns the id of an equivalent SDS structure. This provides a simple way of
constructing SDS structures on the fly but does have the complication of requiring the
compiler (and associated libraries) to be linked with your program.

The second form of the SDS compiler is the utility program “sdsc”. This program
will read from its standard input a C structure definition and write to its standard
output a C routine definition. This routine is the sequence of SDS calls required to
build an equivalent C structure.

The normal procedure is to create an include file which contains the C structure
definition. Any program module which wishes to put or get data from equivalent
SDS structure will include this file to get the definition of the C structure. It can then
just use SdsGet() and SdsPut() to move data between the SDS and C structures.
This include file is also run though the “sdsc” program to generate the source of a C
module. This C module can be linked with your program and contains a function that
can be invoked to generate the SDS structure and return its id. You have to specify a
name for the function on the command line4.

Any C structure that is representable by SDS can be “compiled”. You can use nested
structures and “typedef’s” in the normal C way to define complicated structures. For
maximum portability, use the C equivalent types defined in table 4.1. Although the
compiler will also accept types such as “int”, and “long int”, these are not
portable. (long int is 32 bits (INT32) on some machines and 64 bits (INT64) on
others.). You may also use the “enum” C type, but these also have portability
problems — a compiler option determines if they are to be represented as 16 bit
(short) or 32 bit (INT32) integers.

4 Originally, the sdsc program only generated the body of a C function. You had to include this body
within a C function definition. This removed the need to specify details on the command line but produced
a strange result, particularly under some debuggers. The old style still works but is depreciated.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

30 4 SDS

The sdsc program first runs the C pre-processor over it’s include file. This allows
the standard processing of the source C include file. As sdsc defines the macro
__SDSC__ you can use this macro definition in your source code to distinguish
source specific to the sdsc run. There are a number of command line options and
these are fully documented in the documentation, but the following are used in the
example

-f{functionname} Causes sdsc to generate the entire C function which generates

the SDS structure. The argument is the name to be given to the
function.

-t{type} By default, the first variable which is declared in the input file is
used to generate the SDS structure. If this argument is specified,
there is an explicit declaration of a structure of the specified
type.

-N{name} If -t is used, then this name is given to the created structure.
-D{name[=var]} Allows you to define C pre-processor macros.

Please note that due to problems running C pre-processors, this feature is not
necessarily supported under non-Unix operating systems (VMS and MS Windows).

Example 4.14 shows how to use sdsc.

Example 4.14 SDS Compiler
/* Here is a C include file, named struct.h”
typedef struct {
 int a;
 int b[10];
} part1;

typedef struct {
 char name[10];
 part1 value;
} my_struct;

/* I ran the sdsc program on this as follows */
sdsc -fcreate_struct -tmy_struct -NTheStruct struct.h struct.c

/* The resulting “struct.c” file is

/*
 * This is a routine for defining a SDS structure based on a C
language
 * declaration. It has been generated by the SDS compiler.
 * The outer level structure is of type "_anon0002" (struct.h:9)
 *
 * Generated at Mon May 17 08:20:06 1999

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 31

 */
#define NULL 0
#include "sds.h"
extern SdsIdType create_struct (StatusType *status)
{
 /* Definition of structure "TheStruct" of type "_anon0002"
 at level 0 (struct.h:9)*/
 SdsIdType tid0 = 0; /* SDS id for structure*/
 unsigned long dims[1]; /* Dimension array for array elements*/
 SdsIdType id = 0; /* Primitive element sds id */
 if (*status != STATUS__OK) return(0);

 SdsNew(0,"TheStruct", 0 , NULL, SDS_STRUCT, 0, NULL,
 &tid0, status);
 dims[0] = 10;
 SdsNew(tid0, "name", 0, NULL, SDS_CHAR, 1 , dims, &id, status);
 SdsFreeId(id,status);
 {
 /* Definition of structure "value" of type
 "_anon0001" at level 1 (struct.h:4)*/
 SdsIdType tid1 = 0; /* SDS id for structure*/
 SdsNew(tid0,"value", 0 , NULL, SDS_STRUCT, 0, NULL,
 &tid1, status);
 SdsNew(tid1, "a", 0, NULL, SDS_INT, 0 , NULL,
 &id, status);
 SdsFreeId(id,status);
 dims[0] = 10;
 SdsNew(tid1, "b", 0, NULL, SDS_INT, 1 , dims, &id,
 status);
 SdsFreeId(id,status);
 SdsFreeId(tid1,status);
 /* End of structure definition at level 1 */

 }
 /* End of structure definition at level 0 */

 return(tid0);
}

/* I can now create a structure of the given format using a
 call to create_create(). I an use SdsPut() and SdsGet()
 to insert and extract data from that SDS structure to a
 C structure of type my_struct.
 */

SDS Utility Programs
In addition to the stand alone version of the SDS compiler, several other SDS utility
programs are provided. The program “sdslist” is equivalent to the function
SdsList() for SDS structures stored in files. You specify a list of files containing
SDS structure and the contents of these files are listed to the standard output device.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

32 4 SDS

Similarly, the program “sdslistpath” accepts a period separated path to a sub-
structure in the same format as that accepted by the routine SdsFindByPath().

A GUI interface to examining SDS structures is also available. The program
“sdsexam” takes the name of a file and will display windows which can be used to
examine the structure. It provides a better way to examine the complete details of
complicated SDS structures at the cost of requiring an X windows display and the full
DRAMA release built with Tcl/Tk. (The other utility programs are also available as
part of the stand alone SDS release.).

The program “sdsdump” dumps all or part of an SDS structure in a file, in a similar
fashion to sdslist, but where as sdslist will truncate its output to avoid screen
overflow, sdsdump outputs the entire structure.

The program “sdspoke” allows you to set the data values in an SDS structure store
in a file.

If you have built SDS or DRAMA with support for Starlink enabled, then two
additional programs are available. “sds2hds” and “hds2sds” allow conversion
between structures stored in Starlink’s HDS file format and SDS structures. Note that
for both HDS and SDS structures, the format provides a way of representing named
structures but do not enforce ideas of what structures of given names represent. This
is up to the applications using the structures.

The ARG routines
The ARG routines are provided as part of SDS. They were intended to ease the
implementation of programs using SDS structures to pass command arguments. They
have in practice proved useful in other cases where similar SDS structures are
accessed.

The ARG routines assume an SDS structure contains a set of named scalar items, with
one exception. The exception is one dimensional arrays of characters, which the ARG
routines treat as a character string. Other then this, complicated SDS structures are
not handled.

The ARG “Get” routines return the value of the named item within a SDS structure
the id of which is specified. The ARG “Put” routines put a value into a named item
within an SDS structure, creating the item if it does not already exist. Thus the “Put”
routines can be used to create a structure which can be read using the “Get” routines.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 33

A major feature of ARG is automatic type conversion by the “Get” routines. Values
being fetched are converted to the type requested if this is possible. The following
conversions are attempted.

Table 4.2 ARG type conversions.

String Û Integer
String Û Floating Point

Integer Û Floating Point

All type sizes representable in SDS are supported. Integer types may be signed or
unsigned. Conversions from floating point formats to integer formats will cause
rounding. If the source represents a value too large to be represented in the
destination type, then an error is returned.

Use ArgNew() to create an empty top-level SDS structure for use by the “Put”
routines. The “Get” routines are of the form ArgGetx() where x is one of [c i u
s us 64 u64 f d string] representing C types “char”, “long”, “unsigned
long”, “short”, “unsigned short”, “INT64”, “UINT64”, “float”, “double”
and “char *”. The “Put” routines have an equivalent format — ArgPutx(). For
ArgGetString() an extra argument is used to pass the size of the buffer for the
returned string.

Example 4.16 The ARG routines
#include <stdio.h>
#include "status.h"
#include "sds.h"
#include "arg.h"

extern int main(void)
{

 SdsIdType id; /* SDS identifier */
 StatusType status; /* Inherited Status Variable */
 status = STATUS__OK;
/*
 * Create a structure
 */
 ArgNew(&id, &status);
/*
 * Create an integer component
 */
 ArgPuti(id, "Comp1", 123, &status);
/*
 * Create a float component
 */
 ArgPutf(id, "Comp2", 3.141592, &status);
/*

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

34 4 SDS

 * Create a string component
 */
 ArgPutString(id, "Comp3", "This is a string", &status);
/*
 * List the results
 */
 SdsList(id, &status);
 return(0);
}

The “Get” and “Put” routines will operate on any SDS structure, not just one
generated by ArgNew(). ArgNew() is provided to simplify the interface to
SdsNew() for creating the simple SDS top level structure required. In addition, the
SDS item created by the ARG routines can accessed using all the normal SDS
functions.

SDS Summary
This chapter has provided an introduction to SDS sufficient to get you started and to
understand the SDS code used in DRAMA examples in following chapters. For full
details of SDS and complete routine descriptions, please refer to the SDS manual.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 35

5. DRAMA Obey Messages

Overview
Of the DRAMA messages which can be received by a DRAMA task, the fundamental
one is the Obey message type. Almost all DRAMA programs will handle Obey
messages.

This chapter examines how the application programmer writes code to handle
DRAMA Obey messages.

Each Obey message has a name associated with it. This name indicates what the Task
should do in response to the message. A Task implements an Action (or command) in
response to an Obey message.

Arranging handling of Obey messages

A task tells DRAMA the names of the Obey messages it will support and associates a
routine with each name by calling DitsPutActions(). The specified routine is
invoked automatically by the DRAMA internals when a message of the given name is
received.

We repeat below the code from the “Hello World” in example 2.1.

Example 5.1 Hello World
#include "DitsTypes.h" /* Basic Dits types */
#include "DitsSys.h" /* Initialisation functions */
#include "DitsMsgOut.h" /* MsgOut */
#include "DitsFix.h" /* For DitsPutRequest */

#define BUFSIZE 20000 /* Global buffer size */
#define TASKNAME "DRAMAHELLO" /* Name of this task */

static void Hello(StatusType *status);/* Prototype of handler */

extern int main(void)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO"} };

/*
 * Initialise DRAMA, define the actions we support.
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

36 5 Obey Messages

 DitsAppInit(TASKNAME, BUFSIZE,0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
/*
 * Enter the Dits main loop.
 */
 DitsMainLoop(&status);
/*
 * Shutdown, returning an appropriate error code.
 */
 return (DitsStop(TASKNAME, &status));
}
/*
 * Define the HELLO action handler routine
 */
static void Hello(StatusType * const status)
{
 if (*status != STATUS__OK) return;

 MsgOut(status, “Hello World");
 DitsPutRequest(DITS_REQ_EXIT, status);
}

DitsPutActions() takes the size of and address of an array of structures of type
DitsActionsDetailsType. This structure has 7 components, the first of which
is the address of the routine to be invoked when an obey message of the specified
name is received whilst the last is a character string which is the name of the obey
message. All other components are optional and can be specified as 0 (zero or the null
pointer, depending on the argument5). The function DitsNumber() used as part of
the first argument to DitsPutActions() is actually a macro which given an array
variable, will return the number of elements in the array.

In this example, only one action is supported, named “HELLO”. Action names are
case sensitive6 so the names “HELLO”, “Hello” and “hello” would represent different
actions. The routine which will be invoked for a message with this name is the
“Hello” routine. This is prototyped before being specified as a routine taking one
argument of type pointer to StatusType and returning void. This routine is
known as the “Action Routine” for the “Action” (or command) named “HELLO”.

In the example, the Action Routine definition is very simple. The first thing to note
is the slightly different argument typing — the pointer is marked as “const”. This
ensures we don’t assign to the pointer instead of what is pointing to and catches a

5The ANSI C standard specifies that 0 (zero) can always be used to represent a null pointer. It is
automatically converted to a null pointer of the required type. Since the commonly used NULL macro is
often cast to either “void *” or “char *” it creates some portability problems - so DRAMA sticks to using 0
where ever a null pointer is required.
6If your actions may have to be invoked by an ADAM task, you should stick using upper case action names
since ADAM only supports upper case names.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 37

common error where the pointer is set to zero instead of the value it is pointing to.
You can give the prototype declaration the same format but it is unnecessary in ANSI
C and needlessly exposes details of the function definition at the prototyping stage7.
DRAMA uses this style though out. This is a style issue only but I felt I should
explain the difference.

The first line which does anything is the check of status. The routine obeys the
convention of returning immediately if status is bad on entry. In practice, status is
never bad on entry to an action routine, but you should code it this way as you may
later decide to call this routine from a different location.

Next we consider the following line.

Example 5.2 Basic message output
 MsgOut(status, “Hello World");

Here we output our “Hello World” message to the user. Of special note here is the
position of the “status” variable. The () takes as it’s second argument, a
“printf()” style format string, followed by a variable numbers of arguments to the
format. In this example, no such formatting is done so there are no extra arguments.
A requirement of having a variable number of arguments is that the fixed arguments
be first, thus “status” must be one of the first two arguments. It is before the
format string to keep the format string with its arguments. Each message output by
MsgOut() will be output on a separate line — there is no need to use “\n” and it is
ignored if you do so.

The only other thing left to do is to cause the program to exit

Example 5.3 Program exit
 DitsPutRequest(DITS_REQ_EXIT, status);

The routine DitsPutRequest() is used to communicate to the DRAMA fixed part
what should happen when the action handler returns. Various requests are available,
the request DITS_REQ_EXIT tells the DRAMA fixed part that the program should
exit (actually, all that really happens is that DitsMainLoop() returns, the actual
exiting of the program is done using the return from the main function.) If no call is
made to DitsPutRequest() a default request is made by DRAMA with a code of
DITS_REQ_END This indicates to the fixed part that the action is completed. In this
case, the action may then be invoked again by a new message.

7You should note that some compilers don’t handle this correctly. They force the prototype and definition
to be the same. The DEC Alpha-OSF compiler is one of these.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

38 5 Obey Messages

That is all there is to it. When a user interface program, such as ditscmd. is used to
send an obey message named “HELLO” to this task, the message is output and the
program exits.

Real world requirements
We now know how to build the simplest DRAMA program, but in order to do real
work of the type DRAMA is designed for, we need to introduce various other
facilities.

In the real time systems which make up the majority of DRAMA systems, the
implementation of an action may be time consuming. For example, if the above task
is to move a motor on reception of the Obey message, it will have to wait while the
motor moves to ensure the job is done correctly. This is normally done using
interrupt driven techniques to avoid tying up the CPU and will often require a
timeout to be implemented to catch mechanical problems.

An additional requirement in real world systems is the ability to kill an action cleanly
or to respond to requests for changes in the process of an action. In the above
example, the motor may take several minutes to move to a new position, if we send
the command accidentally we will want to stop the operation if physically possible.

Rescheduling
In order to support these requirements in a portable way, DRAMA implements a
technique known as “Rescheduling”. This works as follows. An action starts the
operation it implements (say “move filter wheel”) and “requests” that instead of
ending when the action routine returns, it be “Rescheduled” as a result of an
interrupt, timeout or subsequent message.

The invocation of the action upon the requested event is known a “Rescheduling” the
action. An action can be rescheduled multiple times allowing complicated sequences
to be implemented by an action.

We will examine the implementation of the simplest form of rescheduling —
implementing a delay. This technique can be used by itself to implement simple
delays or in conjunction with say interrupt driven rescheduling to implement a
timeout

Example 5.4 Timer Rescheduling
static void Hello(StatusType * const status)
{
 if (*status != STATUS__OK) return;

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 39

 if (DitsGetSeq() == 0)
 {
 DitsDeltaTimeType delay;
 MsgOut(status, “First entry");
/*
 * First entry, create a delay structure and enable it.
 */
 DitsDeltaTime(5, 0, &delay);
 DitsPutDelay(&delay, status);
/*
 * Request a wait.
 */
 DitsPutRequest(DITS_REQ_WAIT, status);
 }
 else
 {
/*
 * Second entry, cause the task to exit.
 */
 MsgOut(status, “Second entry");
 DitsPutRequest(DITS_REQ_EXIT, status);
 }
}

The first new function called here is DitsGetSeq(). This function returns an
integer which is known as the “sequence count”. This is zero the first time the
routine is invoked in the context of the one Obey message and is incremented on each
reschedule event for this action. In this example, we use the sequence counter to
separate the code for the first and subsequent entry to this routine.

On the first entry, we set up the timer based reschedule. This is a two part procedure,
the first part being to create a timer value. You use the routine DitsDeltaTime()
to create a timer value. The arguments here are the number of seconds and
microseconds and the address of the time value, of type DitsDeltaTimeType.
Once created a timer value can be used multiple times. We use this one in the call to
DitsPutDelay(), which indicates to the DRAMA fixed part that this action is to
get a timer reschedule message the given interval after this actions returns. This
separation of creating the timer value and putting it makes for more efficient
operation where a timer value is being used repeatedly. A higher level routine,
GitPutDelay(), does both operations in one call.

Having created and put the timer value, we must indicate to the DRAMA fixed part
that we want this action to be rescheduled on expiry of the timer. If we don’t do this,
the timer is ignored. We do this with the call to DitsPutRequest() with the
value DITS_REQ_WAIT. We then return from this routine.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

40 5 Obey Messages

DRAMA then arranges for this routine to be invoked again when the timer expires.
This time DitsGetSeq() returns one and the second part of the code is invoked
where we just output a message and request the program exit.

Rescheduling to a different routine
The use of DitsGetSeq() and an if-then-else or switch statement sequence to
separate the different stages of an action can complicate coding of an action.
Normally, the code to handle the next part of an action will be either exactly the same
or entirely different. In languages like C where you are encouraged to write a lot of
small functions, it makes more sense to be able to specify the routine to handle the
next stage, instead of using DitsGetSeq() to determine what to do when the next
stage occurs. This would remove one layer of coding and make it easier to write
module and actions handlers that can be used by different programs.

The function DitsPutObeyHandler() is used to change the routine to be invoked
when an the action is rescheduled. The following example shows the previous
example rewritten to use this to split the handling of the different stages into different
functions.

Example 5.5 Different handler rescheduling
static void HelloStage2(StatusType * status);

static void Hello(StatusType * const status)
{
 DitsDeltaTimeType delay;
 if (*status != STATUS__OK) return;

 MsgOut(status, “First entry");
 DitsDeltaTime(5, 0, &delay);
 DitsPutDelay(&delay, status);
/*
 * Change the handler and then request a wait.
 */
 DitsPutObeyHandler(HelloStage2,status);
 DitsPutRequest(DITS_REQ_WAIT, status);
}

static void HelloStage2(StatusType * const status)
{
 MsgOut(status, “Second entry");
 DitsPutRequest(DITS_REQ_EXIT, status);
}

For complicated actions, the resulting programming style of is often neater, clearer,
more modular and more efficient. When the action is started a second time, the
handler is automatically reset to the original routine.

Multiple Actions

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 41

A given task may respond to action messages of more then one name. For example, a
simple task which moves and monitors a filter wheel may respond to actions
“INITIALISE”, “MOVE_FILTER” and “EXIT”. This ability allows the
implementation of applications which must maintain context across such operations.
Typical real applications at the AAO have five to fifty different actions and where
they access a physical instrument or device, will be the only task to access that
instrument directly.

This way of building DRAMA tasks is a matter of style. You may prefer to build a lot
of simple tasks to access the one physical device, each with one action or a small
number of actions.

To specify multiple actions, you add more entries to the action array specifying details
of each action. For example, we may prefer to split the HELLO action itself from the
shutdown of the task by providing an EXIT action. This will allow us to send the
HELLO action to the same task multiple times. The “Actions” array now looks like

Example 5.6 Multiple Actions - actions array
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };

The routine Exit() will be invoked when the EXIT action is received. The
Hello() can now be modified such that it no longer causes the program to exit.

Example 5.7 Multiple Actions - routines
static void Hello(StatusType * const status)
{
 if (*status != STATUS__OK) return;

 if (DitsGetSeq() == 0)
 {
 DitsDeltaTimeType delay;
 MsgOut(status, “First entry");
/*
 * First entry, create a delay structure and enable it.
 */
 DitsDeltaTime(5, 0, &delay);
 DitsPutDelay(&delay, status);
/*
 * Request a wait.
 */
 DitsPutRequest(DITS_REQ_WAIT, status);
 }
 else
 {
/*
 * Second entry. Action completes.
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

42 5 Obey Messages

 MsgOut(status, “Second entry");
 DitsPutRequest(DITS_REQ_END, status);/* Optional */
 }
}

static void Exit(StatusType * const status)
{
 if (*status != STATUS__OK) return;
 DitsPutRequest(DITS_REQ_EXIT, status);
}

The Hello() routine now puts a request of DITS_REQ_END on its second entry
instead of DITS_REQ_EXIT. This request indicates that the action has completed
but the task is left running. When an action completes, the task which sent the obey
message gets an action completion message. This request is the default request so
putting it is optional. The DITS_REQ_EXIT just does a DITS_REQ_END before
telling the task to exit from DitsMainLoop().

Simultaneous Actions
Rescheduling allows multiple actions to be running at the same time. The code of the
two actions is not running at the same time, but whilst one action is waiting for a
reschedule event another may be running. This relies on the application programmer
coding his application to use the rescheduling facilities to wait for events instead of
just doing simple polling or blocking. This technique is known as “co-operative
multi-tasking” and is the most portable way to implement multi-tasking applications.
For example, an application can start two filter wheels moving at the same time in
response to two different messages from the user. Consider the following Actions
array used with the code from example 5.7 above.

Example 5.8 Simultaneous Actions
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO1"},
 { Hello, 0, 0, 0, 0, 0, "HELLO2"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };

Here we have replaced the “HELLO” action by two actions, “HELLO1” and “HELLO2”.
For my convenience only I have continued to specify the one routine to be invoked in
each case. Your application would normally require you use different action routines
for different actions. By extending the delay being created by DitsDeltaTime()
to about ten seconds, it is easy for you to use the ditscmd program from different
terminals to send first HELLO1 and then HELLO2. The messages output will show
the switching of the two actions.

Simultaneous Actions of the same name

In the above example, I created actions of different names to demonstrate the
simultaneous actions feature. By default, DRAMA only allows one action of the same

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 43

name to be active at the same time. If you send a second obey to a task whist one of
the same name is still active, the second obey will be rejected with a message
indicating the action is already active.

This style of operation is normally preferred when physical devices are being
controlled. For example, you would not normally want the user to try to move the
same filter wheel multiple times, nor does it make sense to allow multiple
Initialisation actions to be running at the same time.

It is possible for you to specify that multiple actions of the same name be allowed
using the flag DITS_M_SPAWNABLE as the fourth item in an action definition entry
as shown below

Example 5.9 Simultaneous Actions - Same Name
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, DITS_M_SPAWNABLE, 0, 0, "HELLO"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };

In this example, an unlimited number of actions named “HELLO” may be active at the
same time — only limited by the amount of memory available.

If you wish to limit the number of actions of this name, specify a routine as the fifth
item in the entry. This routine is of type DitsSpawnCheckRoutineType and will
be invoked each time an action of this name is to be started. It takes two arguments, a
user specified item (the sixth item in the entry) and the address of a status variable.
Its return type is void. If it returns with status ok, the action is allowed to start,
otherwise the message is rejected with the value of status being supplied as the reason
for the rejection. The use of a routine instead of a hard limit allows the numbers of
actions to be limited depending on the dynamic state of the program.

Beware that if the flag is an “or” of multiple flags including DITS_M_ACT_INFO or
DITS_M_ACT_CLEANUP then the sixth item is the address of a structure instead of
the spawn check data. This structure’s type is DitsActInfoType and its first item
is the spawn check data item. See the DitsPutActions() routine description for
more details.

Also beware that it is harder to “Kick” spawn able actions. Kicking is explained in the
next chapter.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 45

6. Kick Messages, More on Rescheduling

Overview
The second DRAMA message we will examining is the Kick message. This message
allows communication from outside a task to an active rescheduling Action in a task.
The most common use of the Kick message is to cancel or abort an Action but they
may be used for any other reason which requires communication with an active
action, such as altering the progress of an action. For example, you may have an
action named “EXPOSE” which implements a Camera device exposure. An exposure
can take a long time and you may want to cancel the exposure or alter the exposure
time once it is running. The Kick message is the appropriate message to use.

Basic Kicking
To add the ability to kick an action, you need only specify a routine to be invoked
when a kick message arrives for that action. This is the second item in the action map
supplied to DitsPutActions. The following example is our rescheduling variation
of Hello world (separate EXIT action) with Kicking of the “HELLO” action supported
using the KickHello() routine.

Example 6.1 Kicking HELLO

#include "DitsTypes.h" /* Basic Dits types */
#include "DitsSys.h" /* Initialisation functions */
#include "DitsMsgOut.h" /* MsgOut */
#include "DitsFix.h" /* For DitsPutRequest */

#define BUFSIZE 20000 /* Global buffer size */
#define TASKNAME "DRAMAHELLO" /* Name of this task */

static void Hello(StatusType *status);/* Prototype of handlers*/
static void KickHello(StatusType * status);
static void Exit(StatusType *status);

extern int main(void)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Hello, KickHello, 0, 0, 0, 0, "HELLO"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };
/*
 * Initialise DRAMA, define the actions we support.
 */
 DitsAppInit(TASKNAME, BUFSIZE,0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
/*

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

46 6 Kick Messages

 * Enter the Dits main loop.
 */
 DitsMainLoop(&status);
/*
 * Shutdown, returning an appropriate error code.
 */
 return (DitsStop(TASKNAME, &status));
}
/*
 * Define the HELLO action handler routine
 */
static void Hello(StatusType * const status)
{
 if (*status != STATUS__OK) return;

 if (DitsGetSeq() == 0)
 {
 DitsDeltaTimeType delay;
 MsgOut(status, “First entry");
 DitsDeltaTime(10, 0, &delay);
 DitsPutDelay(&delay, status);
 DitsPutRequest(DITS_REQ_WAIT, status);

 }
 else
 {
 MsgOut(status, “Second entry");
 DitsPutRequest(DITS_REQ_END, status);
 }
}
/*
 * Handle kick of the HELLO action by ending the action.
 */
static void KickHello(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_END, status);
}

static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);
}

To run this example using the “ditscmd” command, send the Obey message from
one session in the normal way. To send the Kick message, run a second copy of
ditscmd, with the same arguments but with the flag “-k” between the command and
the taskname argument. This command indicates that a Kick message should be sent
instead of the default of an Obey message.

In this example the Kick routine causes the action to end immediately. The other
possibilities are described later.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 47

You can also dynamically set and change the kick handler to be in effect for future
reschedules of the action using DitsPutKickHandler(), which is similar to
DitsPutObeyHandler().

Strands of control.

DRAMA tends to talk about the “Obey” strand of control and the “Kick” strand of
control. The Obey strands are the normal entries to Action handlers triggered by
Obey messages and reschedule events. The Kick strand of control is an entry to the
Kick routine. Although both strands of control sometimes look similar, you never
reschedule the Kick strand of control — instead the Kick routine can change the
rescheduling of the Obey strand. The Kick strand of control is always triggered by
reception of a Kick message. Entries to both the Obey and Kick strand cause the
sequence count (returned by DitsGetSeq()) to be incremented.

You can find out what strand of control you are running in by calling
DitsGetContext(), which returns DITS_CTX_OBEY for an obey strand and
DITS_CTX_KICKED for a Kick strand. An additional possible return value,
DITS_CTX_UFACE, is explained in the section on User Interfaces and is not normally
of interest to application programmers.

Rescheduling options
We have already seen a couple of the possibilities as the first argument to
DitsPutRequest(). We will now examine all the possibilities.

DITS_REQ_END This is the default request when an Obey routine is

invoked, both on the first entry and on subsequent reschedules. It is not the
default when routines are invoked by a Kick message. This request indicates the
action has completed and a completion message is sent to the originator of the
Obey message

DITS_REQ_EXIT As per DITS_REQ_END, but after the completion message
is sent, the DRAMA fixed part will exit, causing DitsMainLoop() to return.

DITS_REQ_STAGE A reschedule event will be queued for this action
immediately it returns to the fixed part. The result is that the action is invoked
again as soon as any other outstanding messages are handled. You can use this
request to break up your action code in such a way as to allow Kick messages
and other Obey messages to be received.

DITS_REQ_WAIT A reschedule event will be queued after expiry of a timer.
The timer must be put independently using DitsPutDelay().

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

48 6 Kick Messages

DITS_REQ_STAGE is equivalent to DITS_REQ_WAIT if the timer delay for
the later request is zero seconds.

DITS_REQ_SLEEP The action is put to sleep. This is like the

DITS_REQ_WAIT request except that the putting of a timer delay is optional.
It is normally used to put the action to sleep to wait for interrupt event messages
(See DitsSignalByName()) and Kick messages.

DITS_REQ_MESSAGE Wait for a reschedule event triggered by the reception of a

message directed towards this action. Such a message is in response to a
message initiated previously by this action. See Chapters on control tasks for
more information. A timeout can also be put using DitsPutDelay().

If you find that both DITS_REQ_SLEEP and DITS_REQ_MESSAGE apply, use the
later.

The one other case to consider is the default behaviour for entries to Kick routines. If
no request is put in a Kick routine, then the Obey strand of control is not affected by
the Kick message. If status is bad when the routine returns, then it is considered that
the Kick message has been rejected and the status returned is considered the reason
for the rejection. If status is not bad, then the Kick is considered to have succeeded,
but simply does not want to effect the rescheduling, possibly just updating a value to
be examined on the next Obey reschedule or it might output progress information.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 49

7. DRAMA Message Arguments

Overview
DRAMA messages can have arguments. These arguments are in the form of a single
SDS structure which is associated with the message and is known as the Argument
Structure. There may be only one such structure associated with each message but
since it is an SDS structure it can be of any complexity and it is easy to simulate a set
of arguments.

Handling Arguments.
The argument structure associated with an Obey or Kick message can be accessed
with the function DitsGetArgument. This function returns the SDS id of this
argument structure (type SdsIdType), if one was supplied. It returns zero (0) if no
argument structure was associated with the message. (Zero is always an invalid SDS
id.)

You do not need to free this id or delete the structure, it is cleaned up by DRAMA
itself after your action handler routine returns. But you should beware that the
argument structure is not maintained across rescheduling of an action so you need to
copy it using SdsCopy() if you want to keep it. Arguments are normally external
SDS structures so you cannot modify the structure format although you can modify
it’s contents.

User Command Arguments.

The format of the SDS arguments sent with messages is up to the applications
involved. You can send large images if required. In completed applications, the user
interface is often a specialised windowing based application which will validate user
input (making use of other DRAMA facilities) before building the argument structure
required by the application task the message is being sent to. For example, the user
may use the user interface to specify an image file. The user interface can then read
the file itself and specify the image as an argument to an Obey message sent to the
application. The underlying application task here need not and should not be
bothering with things such as keyword associations, defaults, prompting for values in
error etc, these are better left to the user interface. These behaviours were essential
to older command line based applications and nothing in DRAMA prevents this
approach, but it is not supported in the DRAMA core.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

50 7 Arguments

Note, the above policy does not remove the requirement for the underlying
application to check ranges and types of arguments etc., but it would normally handle
problems here by simply rejecting the message (by setting status bad before
returning). This serves as a check on the user interface.

A problem with this approach is that it makes it hard to run simple programs and test
a system as it is being built as it is impossible to implement common user interface
programs. A convention is required to allow the building of common user interface
programs otherwise applications won’t know how to treat the argument structures
they receive.

The convention is that structures generated by standard user interfaces (such as
ditscmd) are built using the ARG library. Each element in such structures are simple
scalar values, with the exception that character strings are represented using character
arrays. The names of items will be “Argument1”, “Argument2” … “Argumentn”
where “n” is the number of arguments. This of course restricts you to sending
commands where the arguments fit this approach, but there is probably nothing
which can be done about Actions which require more complicated argument
structures, such a images — specialised user interface needs to be built (this is not
hard, as we will see later).

As you might expect, the “ditscmd” program uses this approach. Any extra arguments
after the action name are put into such an argument structure. The following
example shows how to handle such an argument in application.

Example 7.1 Accessing Arguments
#include "DitsTypes.h"
#include "DitsSys.h"
#include "DitsMsgOut.h"
#include "DitsFix.h"
#include "sds.h" /* For SDS stuff */
#include "arg.h" /* For ARG routines */

#define BUFSIZE 20000
#define TASKNAME "DRAMAHELLO"

static void Hello(StatusType *status);
static void Exit(StatusType *status);

extern int main(void)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO"},

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 51

 { Exit, 0, 0, 0, 0, 0, "EXIT"} };
/*
 * Initialise DRAMA, define the actions we support.
 */
 DitsAppInit(TASKNAME, BUFSIZE, 0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
/*
 * Enter the Dits main loop.
 */
 DitsMainLoop(&status);
/*
 * Shutdown, returning an appropriate error code.
 */
 return (DitsStop(TASKNAME, &status));
}

static void Hello(StatusType * const status)
{
 char string[30];
 if (*status != STATUS__OK) return;
/*
 * Get our argument as a string.
 * Status will be set bad if there is no argument.
 */
 ArgGetString(DitsGetArgument(),"Argument1",
 sizeof(string),string, status);

 MsgOut(status, “Argument is \”%s\””, string);

 DitsPutRequest(DITS_REQ_END, status);
}

static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);
}

The important line is the call to ArgGetString(). This call returns to the call the
value of the item named “Argument1” in the SDS structure referred to by the id
returned by DitsGetArgument(). The argument concerned is converted to a
string if it is not one already. If you want it as say an integer, replace this call by
ArgGeti(). Such calls will complain if the supplied argument cannot be converted
to the requested types. This example just outputs the argument value using
MsgOut().

Also of interest here is the GitArg set of routines, such as GitArgGeti(), which
returns an integer. These routines implement range checking and other facilities such
as automatic case conversion for string values. The can also be used to fetch
arguments by either name or position in the structure, allowing some flexibility in the
ordering of arguments where specific user interfaces are used to build argument

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

52 7 Arguments

structures. See the GIT library for more detailsiii (see
http://www.aao.gov.au/drama/doc/ps/git_spec_9.ps).

Output Arguments.
In the same way that argument structures can be associated with the messages that
start Obey’s, arguments can be associated with the messages sent to the parent task
when the action has completed. In addition, intermediate messages can be sent with
arguments attached.

Arguments associated with the completion of an action are normally used to return
some value which is the response of the action. Thus actions may both do work and
return values. You construct such arguments using the SDS and/or ARG routines.
The association of the SDS structure with the completion message is done using
DitsPutArgument(). The first argument to this routine is the SDS id of the
structure. The second argument to DitsPutArgument() indicates what DRAMA
should do with the structure after the message has been sent. Since the completion
message with the argument attached is sent after your action routine has completed,
the SDS structure must out last your action routine code and must be deleted, if
necessary, by DRAMA. This flag has one of the following values

DITS_ARG_DELETE The SDS structure specified is to be deleted after the
message is sent and the SDS id freed.

DITS_ARG_COPY The SDS structure is immediately copied. The copy is

deleted after DRAMA has sent the message. This code is useful
when you want to continue modifying the SDS structure.

DITS_ARG_NODELETE The SDS structure is not deleted by DRAMA nor

is the SDS id freed. This flag is useful if you want the structure
to survive the action completion.

The association of SDS structure with the action completion message only applies if
the action completes on the entry which calls DitsPutArgument(), rather then
rescheduling.

To send an intermediate message, say to indicate progress of an action, use
DitsTrigger(). This routine’s first argument is the SDS id of a structure to be
associated with the message. The term “trigger” indicates that the major reason for
this routine is to “trigger” wake up the parent of the action. Since this routine
operates immediately, no special flags are required and you may delete the SDS

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 53

structure immediately the routine returns. Note that trigger messages normally
require special handling by the parent task. Many such tasks will by default ignore
Trigger messages or report an error. To use DitsTrigger(), include
“DitsInteraction.h”.

Example 7.2 Output Arguments
#include "DitsTypes.h"
#include "DitsSys.h"
#include "DitsMsgOut.h"
#include "DitsFix.h"
#include "DitsInteraction.h"
#include "sds.h" /* For SDS stuff */
#include "arg.h" /* For ARG routines */

#define BUFSIZE 20000
#define TASKNAME "DRAMAHELLO"

static void Hello(StatusType *status);
static void Exit(StatusType *status);

extern int main(void)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };
/*
 * Initialise DRAMA, define the actions we support.
 */
 DitsAppInit(TASKNAME, BUFSIZE, 0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
/*
 * Enter the Dits main loop.
 */
 DitsMainLoop(&status);
/*
 * Shutdown, returning an appropriate error code.
 */
 return (DitsStop(TASKNAME, &status));
}

static void Hello(StatusType * const status)
{
 SdsIdType id;
 if (*status != STATUS__OK) return;
/*
 * Create an argument structure
 */
 ArgNew(&id, status);
 ArgPuti(id, ”RESULT”, 1, status);
/*

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

54 7 Arguments

 * Trigger the parent action, send this structure
 */
 DitsTrigger(id, status);
/*
 * Associate the structure with the completion message.
 */
 DitsPutArgument(id, DITS_ARG_DELETE, status);
 DitsPutRequest(DITS_REQ_END, status);
}

static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);
}

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 55

8.Parameters

Overview
A task may have “Parameters”. Parameters are named data items accessible to both
the task itself and to other tasks. A task uses Get messages to get the values of
parameters belonging to other tasks. It may also use Set messages to set the values of
parameters in other tasks. In these messages, the name associated with the message is
the name of the parameter involved.

Normally parameters are used for one of two reasons.

• To store configuration information which may need to be changed by other
applications. You may for example use parameter values to set a task into
debugging mode while testing it.

• To maintain state information about a task which may be required by other

tasks. This is by far the most important usage.

Parameter Systems
The DRAMA core supports the Get and Set messages but does not define a parameter
system. The task author is responsible for this, allowing the author to choose the type
of the parameter system to be supported or to choose not to have one at all. The
author could for example choose to use an external data base system (such as EPICS)
as the parameter system, choose to emulate an older parameter system (such as the
Starlink ADAM’s parameter system) or the author could decide that the application
requires the lightest tasks possible and as a result choose to have no parameter system.
In the later case, Get and Set messages to the task are rejected.

The parameter system chosen by the author of a task determines how task itself
accesses parameter values, normally providing a set of routines which are invoked to
get and set the parameters belonging to the task.

Our example programs so far have not provided a parameter system. To provide one,
you must tell DRAMA which routines are to be invoked for Get and Set messages.
This is done using DitsAppParamSys()8. This routine both allows you to set the
routines involved and an inquire about the existing routines. Full details can be

8Older code uses DitsPutParSys(). This routine has been superseded by DitsAppParamSys().

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

56 8 Parameters

found in the DITS manualiv (see http://www.aao.gov.au/drama/doc/ps/dits_spec_5.ps).
Normally the parameter system initialisation routine would invoke
DitsAppParamSys() on your behalf and you need only concern yourself with this
routine if implementing or modifying a parameter system.

The SDP parameter system
Although DRAMA does not enforce the use of a single parameter system or indeed
require any parameter system at all, it does provide one. The “Simple DITS
Parameter” System, SDP, uses SDS to implement a minimal parameter system that has
proved to be sufficient in most cases.

SDP stores all parameters in a single SDS structure. Parameter names correspond to
top level items in this structure. Since SDS is used, parameters may be structured
allowing parameters of any complexity including images.

By convention, simple parameters (scalars and character strings (null terminated
single dimensional character arrays) use upper case only names whilst other
parameters use mixed case names. This allows older ADAM systems to access the
simple parameters.

Example 9.8 shows how to add the SDP parameter system to the DRAMAHELLO
program. The call SdpInit() creates the parameter system and calls
DitsPutParSys(). This should be done after calling DitsAppInit() and
before calling DitsMainLoop().

Example 8.1 Parameters
#include "DitsTypes.h"
#include "DitsSys.h"
#include "DitsMsgOut.h"
#include "DitsFix.h"
#include "Sdp.h" /* For the parameter system. */
#include "sds.h" /* For SDS stuff */
#include "arg.h" /* For ARG routines */

#define BUFSIZE 20000
#define TASKNAME "DRAMAHELLO"

static void Hello(StatusType *status);
static void Exit(StatusType *status);

extern int main(void)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 57

 static DitsActionDetailsType Actions[] =
 { { Hello, 0, 0, 0, 0, 0, "HELLO"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };

/*
 * Parameters supported by this task.
 */
 static INT32 one = 1;
 static double fone = 1.0;

 static SdpParDefType params[] = {
 { "PARAM1", &one, SDP_INT },
 { "PARAM2", &fone, SDP_DOUBLE },
 };
 SdsIdType parsysid = 0;

/*
 * Initialise DRAMA, define the actions we support.
 */
 DitsAppInit(TASKNAME, BUFSIZE, 0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
/*
 * Initialise parameter system.
 */
 SdpInit(&parsysid, &status);
 SdpCreate(parsysid, DitsNumber(params),params, &status);
/*
 * Enter the Dits main loop.
 */
 DitsMainLoop(&status);
/*
 * Shutdown, returning an appropriate error code.
 */
 return (DitsStop(TASKNAME, &status));
}

static void Hello(StatusType * const status)
{
 long value;
 if (*status != STATUS__OK) return;
/*
 * Get our argument as a string. Status will be set bad
 * if there is no argument
 */
 ArgGeti(DitsGetArgument(),"Argument1”, &value, status);
 MsgOut(status, “Argument is \”%ld\””, value);
/*
 * Put the value into the parameter PARAM1
 */
 SdpPuti("PARAM1", value, status);

 DitsPutRequest(DITS_REQ_END, status);
}

static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

58 8 Parameters

}

To create parameters you use SdpCreate() or SdpCreateItem(). The former
routine is used to create a set of parameters described by an array of structures of type
SdpParDefType. This structure has three elements, being the name of the
parameter (character string pointer), a pointer to the initial value (void *) and the
type of the parameter, as per below.

Table 8.1 SDP parameter types.

Type Details C Type
SDP_BYTE used to represent signed byte size

integers.
signed char *

SDP_UBYTE used to represent unsigned byte size
integers.

unsigned char *

SDP_SHORT 16 bit signed integers short *
SDP_USHORT 16 bit unsigned integers unsigned short

*
SDP_INT 32 bit signed integers INT32 *
SDP_UINT 32 bit unsigned integers UINT32 *
SDP_I64 64 bit signed integers INT64 *
SDP_UI64 64 bit unsigned integers UINT64 *
SDP_FLOAT single length floating point float *
SDP_DOUBLE Double length floating point double *
SDP_CHAR Use to represent byte sized characters

(not strings)
char *

SDP_STRING Use to represent character strings. char *
SDP_SDS Use to specify structured or array

parameters. Construct the SDS
structure and put the address of it
here.

SdsIdType *

You can see that there is a scalar SDP type equivalent to every SDS scalar type and
two extra types, SDP_STRING and SDP_SDS. For each of the scalar types, the
default value is specified by specifying the address of an item of the C type from the
third column of the table as the second element in the structure.

The SDP_STRING type is used for character string types. The value in this case is the
address of a null terminated string. This type is represented using an SDS character
array.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 59

The SDP_SDS type can be used to represent any other type using a SDS structure.
You specify for the default value the address of an SDS id. The associated SDS
structure will be inserted into parameter system. This allows you to make any
structure representable by SDS into a parameter — images for example. Probably a
better approach is to add such complex parameters at run time, one at a time. To
create a single parameter you can use SdpCreateItem(). You specify with this
routine the parameter system id and the SDS id of the item to be inserted.

Getting/Putting Scalar and String SDP parameters.

A task which uses SDP as its parameter system may use a sequence of simple calls to
get and change the values of scalar parameters. These calls are similar to the ARG
series of calls. The above example uses SdpPuti() to change the value of a
parameter. It could have used SdpGeti() to get the value of the parameter. These
routines are based on the ARG routines and perform type conversion in the same
way, i.e. the value is converted if necessary to the requested type.

Additionally, as per the ARG routines, there are routines to get and put character
strings, SdpGetString() and SdpPutString().

Note that some older code may use the ARG routines directly, specifying the value
returned by DitsGetParId() as the first argument. This still works but may not
have all the functionally of the SDP routines. In particular, for the Put versions, the
parameter monitor system described below, will not work. In addition, use of the
ARG routines may cause a compilation warning unless the value of
DitsGetParId() is cast to a SdsIdType.

Getting/Putting Complex SDP parameters.

When getting and putting the values of non-scalar SDP parameters (arrays, complex
structures etc.), it is harder to generalise the interface. In addition, for some
parameters (such as images) efficiency may become very important - you don’t want
values copied unnecessarily. Since these parameters are implemented as SDS items,
SDP provides support for accessing them directly using SDS. This allows you to use
SDS features such as SdsPointer() to access items efficiently.

You can use SdpGetSds() to get the SDS id of a parameter. Since the SDP
parameter system is implemented as one SDS structure, all this routine does is a
SdsFind() call using the name of the parameter and the id of the parameter
system. It returns the resulting SDS id, which should be freed when you are finished
with it. Once you have an id to the item, you can use all the normal SDS facilities,

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

60 8 Parameters

SdsPointer() to access the data directly, SdsFind() to navigate etc. You can
even change the structure of the item.

When you change the value such a parameter, you should notify SDP of the change
using SdpUpdate(). You specify the SDS id of the parameter that you received
from SdpGetSds(). If you are doing a batch of changes to a given parameter, you
need only call SdpUpdate() at the end. Note that the requirement to call
SdpUpdate() does not stop another task from getting the value of the parameter
while you are changing it. That task will see the value in its intermediate state (but
only if your task reschedules in the middle of the changes). SdpUpdate() is used
by the parameter monitor system (see below) to indicate that tasks monitoring
parameters should be told of the change.

Alternatively, you may change the value of structured parameters using
SdsPutStruct(). This call takes a parameter name and an SDS id and makes the
specified SDS item the new value of the named parameter. This is somewhat less
efficient than the combination of SdpGetSds() and SdpUpdate() but prevents
other tasks seeing the intermediate state.

Reserved SDP parameter names

SDP reserves all names starting and ending with an underscore. This allows the
implementation of special features fully documented in the SdpGet() routine
description.

Currently, the following special parameter names are implemented.

ALL When specified as the parameter name in a Get message this
name causes the entire parameter system to be returned.

NAMES When specified as the parameter name in a Get message this

name causes the names of the parameters to be returned. The
returned value is an SDS structure of type SdpNames. It
contains one item which is a 2 dimensional SDS array,
representing an array of null terminated character strings being
the names of the parameters.

LONG Indicates that the parameter name is specified in the SDS

structure as well as the value. This allows us to specify
parameter names of any length.

Long Parameter Names

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 61

The SDP parameter system supports long parameter names in SET and GET messages.
This allows parameter names to be specified using the format accepted by the
SdsFindByPath() function. This allows you to set and get the values components
of structured DRAMA parameters. See the SdsFindByPath() function for more
details of the naming format SET messages involving long parameter names make use
of the _LONG_ special parameter name to allow the parameter name be part of the
message argument structure.

To send a GET message involving long parameter names, the MGET message is used
instead of the GET message. Once again, the parameter name becomes part of the
argument to the message allowing it to be of any length.

Get multiple parameter values

DRAMA itself, rather then SDP, supports the concept of getting multiple parameter
values in one message rather then having to set multiple GET messages. This is done
with a MGET message, which specifies parameter names using an argument to the
message rather then in the message “name” structure.

Read only parameters

In the default way of working, any other task can change the values of a parameter.
Sometimes this is undesirable. There are two ways around this depending on the
features required. If you wish your entire parameter system to be read only from
other task s(all they can do is get the parameter values) invoke the routine
SdpSetReadonly() after invoking SdpInit().

If on the other hand, you wish read only for some parameters only or you wish to
validate the values of parameters, consider specifying your own parameter setting
routine using DitsAppParamSys(). This set routine will be invoked with the
parameter system id, parameter name and SDS id of the new value. You can validate
the parameter value however you please before invoking SdpSet() to set the
parameter value or rejecting it by returning bad status. In effect, you are creating
your own parameter system but using SDP to help you implement it and provide
consistency.

Parameter Monitoring
One of the most powerful features of DRAMA is the parameter monitor facility. A
new message type known as the Monitor message supports this feature.

The basic facility involves two tasks, say task A and task B. Task A tells task B that it
is interested in the value of one or more parameters belonging to task B. Task A will
then receive a message each time the values of the specified parameters are changed.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

62 8 Parameters

Consider for example the case of a user interface (task A) which operates a camera
device (task B) which has a shutter. If the shutter state is placed by task B in a
parameter, then the user interface can monitor that parameter and display its values
on the user interface. The important thing here is that task B need do nothing other
then put the state of the shutter in a parameter. All details of the monitor operation
are hidden from task B by DRAMA. There may be any number of tasks monitoring
any number of task B parameters. In addition, the work required by task A is
probably less then it would be otherwise, for example if it explicitly polled for the
position of the shutter.

Alternatively, a different type of monitor allows task A to tell task B to send the value
of parameter to a third task, say task C. Consider the above example. Task B may be
able to make available in a parameter, the images being read from the camera. To
avoid replication of code, a common program which can display images may be
available. This second type of monitor allows task A to tell task B to forward the
value of this parameter to task C. This will be done each time the parameter changes.
Various task A/B combinations may use the same task C to display images.

As a further example, task C may maintain in a parameter the details of areas of the
image selected by the user. Task A could monitor these parameter values and use
them to set windows, specify centroiding regions etc.

The monitor facility has proved very powerful in both user interfaces and in cases
where a common control task must monitor the state of other tasks.

Parameter monitoring example

As a demonstration of parameter monitoring, use the program from example 8.1. You
will need two terminal sessions. From session 1, start the example program. From
session two, enter the following command

Example 8.2 Parameter monitoring 1
ditscmd -p DRAMAHELLO START PARAM1

Now go to the session 1 terminal and type

Example 8.3 Parameter monitoring 2
ditscmd DRAMAHELLO HELLO 10

This results in the parameter PARAM1 being changed. A message will be received on
terminal session 2. Alternatively, you can set the parameter directly from session 1
using

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 63

Example 8.4 Parameters
ditscmd -p DRAMAHELLO PARAM1 30

Parameter monitoring uses a transaction that you set up with the first invocation of
ditscmd (the -p option). That message told the DRAMAHELLO task that the ditscmd
task was interested in the parameter PARAM1. A message was returned containing
the monitor transaction id. This id can be used to change details of the monitor
transaction, just as which parameters are monitored and to cancel the transaction.
The subsequent invocations of ditscmd changed the parameter value resulting in
the messages being sent to the original version of ditscmd9. Note, the original version
of ditscmd is left running.

To cancel the monitor transaction, you a monitor message with a name of “CANCEL”,
specfying an argument which is the integer monitor id returned by the “START”
message. For example, from session 1 type.

 Example 8.5 Canceling a parameter Monitor
ditscmd -p DRAMAHELLO CANCEL 1

The full session one window transcript it.

% ./dramahello
% ditscmd DRAMAHELLO HELLO 10
DITSCMD_2642:DRAMAHELLO:Argument is "10"
% ditscmd -p DRAMAHELLO CANCEL 1

while the session 2transacript is

% ditscmd -p DRAMAHELLO START PARAM1
DITSCMD_263f:Monitor start message from task "DRAMAHELLO". ID = 1.
DITSCMD_263f:Monitor message from task "DRAMAHELLO". Parameter
PARAM1 = 10.

Once again, DitsAppParamSys() is the underlying routine to set up parameter
monitoring. In addition to the parameter setting and getting routines, you can specify
routines to support parameter monitoring. For a full specification of the parameter
monitoring message, please see the DitsInitiateMessage() function
description.

.

9“ditscmd” is run under a different task name each time it is started. This is required to allow multiple
versions of ditscmd to run at the same time.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 65

9. Message/Status codes.

Overview
In chapter 2 you were introduced to the DRAMA status convention. You will recall
that DRAMA uses a convention for the handling of error conditions known as the
“Modified status convention”. All routines which take arguments will have a “status”
argument. This argument is a pointer to a variable of type StatusType. Normally,
if the value of the variable is not equal to zero (STATUS__OK) then the routine
returns immediately. The routine can set the status to a non-zero value when it
encounters an error.

Additionally, the use of particular bad status values help locate where things have
gone wrong. If a particular package were to use unique status values in every case it
set bad status, you can quickly locate in the source code just where a program struck
an error.

We will now examine the use of particular bad status codes and their generation.

Status/Error codes
Error/Status/Message codes (the terms are used interchangeably) are integer values
which will fit within a 32 bit signed number. The actual StatusType type will be at
least 32 bits in size, but will generally correspond to the size used by Fortran
programs for simple integers. This allows compatibility with a large amount of
existing Fortran code.

The StatusType variable is defined in the include file “status.h”, which also
defines one value, STATUS__OK, which is always defined to be zero (for
compatibility reasons)

All other error codes should be defined to a value calculated using the equation

CODE = 134250496 + 65536 x facility + 8 x message number +

severity

Here, the message number (in the range 1 to 4095) is assigned to the error condition
by the author of the subroutine library. The facility number (in the range 1 to 2047)
allows message numbers to be independent of other systems, assuming the use of an

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

66 9 Message/Status codes

allocation scheme10. Facility numbers in the range 1800 to 1899, and the number
2000, may be used by DRAMA software and should be avoided.

The severity is used to distinguish between different levels of error. The use of
severity is solely a convention, but allows tasks/subroutines to indicate to controlling
tasks/routines that an error is not fatal. Severity is a three bit number, with the
following values used

Value Name Meaning
0 WARNING Warning only, invoking code can consider

ignoring this failure
1 NORMAL Can be taken to mean that no error has

occurred, but provides information about the
result of a function. A leftover from older
systems, it is generally not used in DRAMA
code.

2 ERROR A failure has occurred.
3 INFORMATIONAL Can be taken to mean that no error has

occurred, but provides information about the
result of a function. A leftover from older
systems, it is generally not used in DRAMA
code.

4 FATAL/SEVERE A fatal error has occurred, retrying is not
likely to work.

Other values have no meaning. Remember that severity is purely a convention, any
status value other then zero is generally taken as indicating an error has occurred, it is
up to the application code to implement any special handling of other values.

Why use error codes.
The DRAMA error codes are simple integer values. They can be compared efficiently
and passed about the network. At a most basic level, a routine will set status to a
particular code when something goes wrong. If all the calling routines simply return
on bad status, this bad status will eventually arrive at a level in the program where it
can be delivered to the user. Since error codes can be unique to a particular sub-
routine, it may be possible to determine exactly where the program failed.

10Software groups associated with the UK astronomy community use facility numbers from a range of
facility numbers allocated to each institution by the Starlink ADAM Support Group.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 67

Additionally, the higher levels of the code may be capable of handling particular
errors. For example, if a routine which opens a file fails due to the file not existing,
the caller may examine the error code and in this case, create the file. The calling
routine in this case may be a subroutine call or involving the sending of a message to a
another task anywhere on the network.

In summary, the DRAMA error code system allows you to determine where an error
came from and how to handle it.

Associating text with error codes.
As mentioned above, error codes may eventually be returned to a level where they
must be presented to the user. Integer error codes are of limited use at this point.
DRAMA error codes generated in the normal way (described below) have a text string
associated with them. Routines are provided to retrieve the text string given the error
code, although this relies on the program fetching the string knowing the correct
relationship. The text associated with a message is of the form

FACILITY-L-IDENT, message-text

Where FACILITY is a name associated with the facility number, L is the severity (one
of S (Success), I (Informational), W (Warning), E (Error), F (Fatal/Severe)), IDENT is a
name associated with the message number. The “message-text” can be any text the
author wishes to associate with the error code and normally explains the error. For
example

DITS-E-FILEOPEN, Failed to open file

might indicate a file open failure in a DITS routine.

Creating error codes, Error code include files.
In general, to allow easy use of the integer error codes in C source, one would create a
C “#define” macro to represent each message code. A standard exists which says that
the macro name is the combination of the facility name string and the message name
string, separated by two underscores. For example, the error code the text of which is
shown above would be represented by the C macro DITS__FILEOPEN.

The normal procedure is to put all the error codes from one facility in to one include
file and allow access to the include file by any application which may need to know
what the values are.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

68 9 Message/Status codes

To generate such include files, DRAMA provides a utility known as messgen — the
message code generator. This program takes a file which defines the facility name
and number and contains a list of the message names. For example,

Example 9.1 Error code generation
.FACILITY DITS,2000/PREFIX=DITS__
!
! these lines are comments
!
.SEVERITY FATAL
!
FILEOPEN <Failed to open file>
TASKDISC <Task disconnected>
MACHLOST <The machine has been lost>
INVMSGLEN <Message length is too small>/WARNING
.END

This file is for the facility DITS, named in the first line, as is the facility number. The
prefix defines the first part of the macro name. Comment lines start with explanation
marks. We specify the default severity using the “.SEVERITY” line. Three message
codes are defined, with numbers starting from 1. The generated include file will
contain the definitions of the macro’s DITS__FILEOPEN, DITS__TASKDISC,
DITS__MACHLOST and DITS__INVMSGLEN. The last message here uses a different
severity — “WARNING”. For full details of the format of this file, see the Message
Generation Utility documentv (see http://www.aao.gov.au/drama/doc/ps/mess_6.ps).
Traditionally, the above is put in a file the name of which is something like
“dits_err.msg”.

To generate the required include file, use the following command

Example 9.2 Running Messgen
messgen -c dits_err.msg

The file generated where will be named dits_err.h. Other options to messgen allow
Pascal, Fortran and Tcl compatible files to be generated and allow the output files
specified.

Error code to text associations.
Another option to the messgen command (-t) causes it to generate an additional C
include file which sets up a structure containing the text associated with each code.
The file generated is suffixed with “_msgt.h”. In the above example, the file would
be “dits_err_msgt.h”. Routines are provided to use these tables to provide
translation of error codes to the corresponding text string.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 69

To enable the translation of a particular facility, you must tell the translation
functions about it. The include file generated above will contain a structure named
“MessFac_FACNAME” (eg., MessFac_DITS in the above example). Your
application initialisation sequence should invoke the routine MessPutFacility()
specifying the address of this structure, eg.

Example 9.3 Adding Facilities
MessPutFacility(&MessFac_DITS);

The translation details of this facility are now available. The basic routine to translate
an error code is MessGetMsg(), which takes as arguments the error code, a flags
word and text buffer details. Eg.

Example 9.4 Translating message codes
char buffer[200];
MessGetMsg(DITS__FILEOPEN, 0, sizeof(buffer), buffer);

The flags argument allows you to fetch only parts of the translation, for example, the
text only. An additional routine, MessPutFlags(), allows you to set the default
mode for this flag.

The above routines are independent of the DITS layer of DRAMA. Within a DRAMA
task, you can use a DITS routine with a simpler interface. DitsErrorText() takes
a single argument, the error code. It returns the address of a buffer with the text.
Subsequent calls will overwrite this buffer and the function cannot be invoked at
interrupt or signal context. Eg.

Example 9.5 Use of DitsErrorText
MsgOut(0, status, ”Translation is %s”,
 DitsErrorText(DITS__FILEOPEN);

Other MESS functions.
The MESS library provides several other functions which help to handle error codes.
Of particular interest is MessSeverity() which returns the severity of an error
code. Note that it is possible to change the severity of a error code by masking out the
existing severity and or-ing with the desired severity. See i for details.

Largely for consistency, functions are provided to access the Facility number
(MessFacility()) and message number (MessNumber()).

Higher level functions.
Several higher level functions are provided to help in managing the Message code
facilities. These features are provided by the DUL library. You can load a message

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

70 9 Message/Status codes

facility file (.msgt_h file) on demand using DulReadFacility(). In addition, the
routine DulLoadFacs(), loads all the standard DRAMA facilities as well as any
defined by the environment variable DRAMA_FACILITIES. The later is a colon-
separated list of message facilitie files to load. The standard higher level DRAMA user
interfaces (xditscmd, dtcl, dtk) invoke this routine automatically.

VMS Compatibility.
This error code system is compatible with a subset of the features provided by VMS
MESSAGE program and system routines, used to provide exception handling and
error messages in Digital’s VMS operating system. This compatibility arose due to the
origins of DRAMA’s predecessor (ADAM) on VAX/VMS machines.

In general, most VMS message error facility files can be compiled by messgen and in
addition DRAMA message facility files can be compiled into a VMS object format by
the VMS “MESSAGE” command. Such object files can be linked with a VMS program
to allow translation of the error code by VMS system calls. There may be some
facility files which can be translated by one system but not the other, but these are
rare.

For consistency, VMS versions of the MESS routines will fall back to operating with
the VMS system calls if translations can’t be found within the MESS system. This
allows DRAMA programs to transparently handle VMS system call error codes using
the same features as used for DRAMA error codes.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 71

10. Control Messages

Overview
The last of the DRAMA message types is the control message. This special type of
message is used to allow a task to communicate with the DRAMA fixed part of
another task. Currently, there are five message names supported, the DEFAULT
message allows a task’s default directory to be retrieved or changed whilst the
MESSAGE control message allows an external task to translate status codes. The
DEBUG message allows you to remotely set the internal DRAMA debug flag. The
DUMPPATHS and DUMPTRANS messages cause details of the valid DITS paths and
outstanding transactions of the task respectively to be written to stdout. The -c
option to the ditscmd program allows you to send control messages.

DEFAULT control messages
This message allows a task’s default directory to be fetched or changed. If an
argument is supplied, then it is the new default directory. The current default
directory (after any change) is returned regardless of if an argument is supplied.

A task can change the routine which handles this message using the function
DitsPutDefaultHandler(). This routine allows you to specify a routine to be
invoked and a client_data item to pass to it. It will also return the current values,
allowing you to chain routines if desired. The routine to be supplied takes a number
of arguments, including the client_data item, the new directory specification,
and a place to return the resulting directory specification. If the new specification is a
null string, then it should just return the current value.

On initialisation, DRAMA makes an implicit call to this routine, specifying the
routine DitsDefault().

MESSAGE control messages
These messages enable a task to translate the integer error codes returned by a task
into text. It is necessary as only the task itself may have available all the message code
to text translations required (this have been set up using the routine
MessPutFacility()). The argument to the message is a character string
containing an integer. This integer may be decimal or hexadecimal string acceptable
by the C run time library strtol() function. The return value for the message
is the transaction.

DEBUG/DUMPATHS/DUMPTRANSID control messages

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

72 10 Control Messages

The DEBUG messages enable you to remotely enable debugging of a DRAMA task.
The argument is converted to an integer using the C run time library strtol()
function and then passed to the routine DitsSetDebug(). If no argument is
supplied, “1” (one) is used. DitsSetDebug() enables or disables output of various
internal debugging information, dependent on its argument.

The DUMPPATHS message causes details of all paths known to the task to be written
to stdout. The DUMPTRANSID message causes all details of all outstanding
transactions to be written to stdout.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 73

11. Error reporting

Overview
Message/Error codes are only the first part of the DRAMA error handling system.
They allow an application program to handle errors in what ever way is appropriate
whilst providing a basic approach to the generation of textual error messages. It is
though quite limited. It does not provide for multiple error messages as might be
required to give context to an error report and it does not allow arguments to be
added to messages, such as the name of files involved.

ERS is the second part of the error reporting system. It provides routines for
reporting textual error messages to the user in a highly controlled way. An important
part of this is a facility for delayed error reporting. This allows lower level code to
report basic error information while the upper level code can add context information
or chose not to report the error.

For example, a higher level routine may ask a lower level routine to open a file. If
this file does not exist the lower level routine will report such a message and return
with bad status. The upper level routine may decide to fail on this error, after adding
details about why it was opening the file, or it may instead want to ignore the open
failure by creating the file. In the later case, it annuls the error messages reported by
the lower level code.

Reporting Errors
Most textual error reports are made using the ErsRep() function. This function
takes at least three arguments. The first is a flag argument which is explained later.
The second is a standard modified status argument (note, it is the second argument,
not the last). The third argument is a C printf() style formatting string. In the
simplest case, this is the text to be output. Alternatively, you can use the C
printf() formatting and specify the format arguments as extra arguments to the
function call.

Unlike most other DRAMA functions, ErsRep() will operate with the status set
bad. In addition, the value of status when the call is made will be associated with the
error report and could be accessed by the user interface code responsible for
outputting the message to the user (although no current user interfaces make use of
this feature). The value of status will be unchanged unless an error occurs in
ErsRep(). Application code which detects and error should set status bad and then
report any context information using ErsRep(), for example—

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

74 11 Error reporting

Example 11.1 Calling ErsRep
void myfunc(int bytes, char **p, StatusType *status)
{
 if (*status != STATUS__OK) return;
 ...

 if ((*p = malloc(bytes)) == 0)
 {
 *status = APP__MALLOCERR;
 ErsRep(0, status, ”Error mallocing %d bytes”, bytes);
 }
 ...
}

Multiple calls may be made to ErsRep(), resulting in a set of messages. This allows
you to output multiple lines and add context in high level functions. For example—

Example 11.2 Add Context to messages
 ...
 myfunc(sizeof(name),name, status);
 if (*status != STATUS__OK)
 {
 ErsRep(0, status, ”Couldn’t get space for string”);
 ...

The string supplied to ErsRep() should contain only printable characters. Any
control characters should be striped out by the user interfaces, but just in case they
are errant, it is better to ensure you don’t supply them.

Ers Flags.
Various flags may be supplied to the ErsRep() call. These flags allow for formatting
options and can provide hints to the user interface on how a message should be
displayed.

Table 11.1 ERS Flags.

Flag Meaning
ERS_M_NOFMT Don't format the string. Any formatting arguments are

ignored and the format string is used as specified.
ERS_M_HIGHLIGHT Suggest to the user interface that the message should be

highlighted.
ERS_M_BELL Suggest to the user interface that the terminal bell (or

an equivalent) should be rung when the message is
output.

ERS_M_ALARM Suggest to the user interface that the user should
acknowledge this message.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 75

Note that the user interface flags are suggestions only. Particular user interfaces may
decide not to implement those functions.

Outputting error reports.
The ErsRep() call does not cause the messages to be output to the user. It saves
them for later delivery. In DRAMA programs, this is done when your action
reschedules or completes. This ensures that all associated messages are delivered at
the same time and allows for the stacking control functions described below.

In some applications, it may be desirable to report an error but then continue. You
can trigger delivery of all reported messages using the ErsFlush() function. It
takes one argument, which is a modified status argument. This function will work
with status bad and if delivery is successful, will clear status.

An additional function, ErsOut(), takes the same arguments as ErsRep(), but
does an implicit ErsFlush() after reporting the message.

Control of message output.
The major reason for deferring the output of error messages is to allow final delivery
of error messages to be controlled by applications software. Its use can be
demonstrated by the following example11.

Consider a subroutine, say “helper()”, which detects an error during execution.
The subroutine “helper()” reports the error that has occurred, giving as much
contextual information about the error as it can. It also returns an error status value,
enabling the software that called it to react to the failure appropriately. However,
what may be considered an “error” at the level of the subroutine “helper()”, eg. an
“end-of-file” condition, may be considered by the calling module to be a case which
can be handled without informing the user, eg. by simply terminating its input
sequence. Although the subroutine “helper()” will always report the error
condition, it is not always necessary for the associated error message to reach the user.
The deferral of error reporting enables application programs to handle such error
conditions internally.

Here is a schematic example of what “helper()” might look like—

Example 11.3 Function “helper”
void helper (char *line, StatusType *status)
{

11This example is largely and adaptation of one taken from the Starlink manual “EMS — Error Message
Service Programmer’s Manual”, by Paul Rees. Starlink User Note 4.3.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

76 11 Error reporting

 if (*status != STATUS__OK) return;
 ...
/*
 * Check for end-of-file error
 */
 if (feof(instream))
 {
 *status = MYAPP__ENDFILE;
 ErsRep(ERS_M_NOFMT, status, ”End of input file reached”);
 }
/*
 * Check for input error
 */
 else if (ferror(instream))
 {
 *status = MYAPP__INPUTERR;
 ErsRep(0, status,
 ”Error encounted during data input, errno = %x”,
 errno);
 }
 ...
}

Suppose “helper()” is called and reports an error, it returns with status set to a
non-zero value. Now suppose that the subroutine “helped()” calls “helper()”
and wishes to defer any messages from “helper()” so that it can decide how to
handle the error conditions itself, rather then troubling the user with spurious
messages. It can do this by calling the routine ErsPush() before it calls
“helper()”. This routine starts a new “error context”, which is independent of any
previous error messages. A return to the previous context can be made later by
calling ErsPop(). The new context ensures that no existing error messages, waiting
for delivery, will be lost though this mechanism. Calls to ErsPush() and
ErsPop() should always occur in matching pairs and can be nested if required.

By calling ErsPush() before calling “helper()”, the function “helped()” can
now handle the error condition itself in one of three ways.

• By calling ErsAnnul(), which “annuls” the error, deleting any messages
reported by “helper()” and resetting status to zero. This effectively causes
the error to be ignored. For instance, it might be used if an “end-of-file”
condition was expected, but was to be ignored and some appropriate action
taken instead. (A call to ErsRep() could also be used after ErsAnnul()
to replace the initial error condition with another more appropriate one,
although this is not often done.)

• By calling ErsFlush(), which “flushes” the error, sending any deferred

error messages in the current context to the user and resetting status to zero.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 77

This notifies the user that a problem has occurred but allows the application
to continue anyway. For instance, it might be used if a series of files were
being processed: If one of these files could not be accessed, then the user
could be informed of this by calling ErsFlush() before going to process
the next file.

• By doing nothing but restoring the previous error context by calling

ErsPop() (which needs to be done in the above cases as well). Any
messages in the context being removed are transferred to the previous
context and will be reported as normal.

This example demonstrates the use of ErsAnnul(). It shows how an “end-of-file”
condition from “helper()” might be detected and annulled.

Example 11.4 Function “helped”
void helped (StatusType *status)
{
 if (*status != STATUS__OK) return;
 ...
/*
 * Create a new error context
 */
 ErsPush();
/*
 * Any error messages from “helper()” are now deferred
 */
 helper(line, status);
/*
 * Trap end-of-file and annul any reported messages
 */
 if (*status = MYAPP__ENDFILE)
 {
 ErsAnnul(status);
 eof = 1;
 }
/*
 * Release the current error context
 */
 ErsPop()
}

sprintf()
We take a slight side path at this point to examine a couple of routines provided by
ERS which it needs itself but which solve a common problem.

Many C Run-time library routines which write to strings do not support any
technique to determine the maximum length of the string which is being written. As

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

78 11 Error reporting

a result, it is easy to overwrite the stack. One such routine, “sprintf()” is required
by ERS. In order to avoid stack related problems, a special version of this routine and
an associated routine, “vsprintf()”, were written. The routines ErsSPrintf()
and ErsVSPrintf() provide an extra argument over sprintf() and
vsprintf(). The extra argument is before the other arguments and indicates the
maximum length of the output string.

It is suggested you use these ERS routines instead of the C Run time library routines
in any case where the maximum length of the resultant string can not be determined.
This will result in fewer problems with stack overwrites.

Use in other applications.
The ERS library is not dependent on DRAMA itself and can be used in stand-alone
applications and libraries. It is necessary through to consider how and when messages
are output. For example, you would normally have to provide somewhere in your
application, a routine to be invoked to perform output. If this is not provided, the
default behaviour is to output error reports immediately to “stderr”. See the ERS
manualvi http://www.aao.gov.au/drama/doc/ps/ers_spec_4.ps)

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 79

Part 2 - Building systems

12.Control tasks — Getting Paths

Overview
A DRAMA control task is a task that controls other tasks. It is used to tie together a
set of tasks, hiding complex interactions from the user. They allow the modular
design of systems by allowing sets of simple tasks to be implemented to control logical
parts of a system. These simple tasks are often associated with a particular logically
stand-alone job, such as controlling a spectrograph, performing particular data
processing etc. They can often be tested in a stand alone mode during testing and
debugging. Control tasks control sets of these tasks to create more complex systems.12

In DRAMA, any task may be a control task. The author will just call a larger range of
DRAMA routines to initiate messages to other tasks and handle the responses. This
chapter introduces the concepts and routines required.

DRAMA Control Concepts
In many systems which provide message sending, the sending functions block if a
reply is expected. This can produce systems which are not responsive at particular
times, particularly when things start to go wrong. DRAMA tries very hard to avoid
blocking operations. At the basic levels, any DRAMA operation which sends a
message just initiates the sending of the message. You are required to reschedule to
await any response.

Higher level DRAMA procedures can hide this rescheduling, giving the impression
that an action is blocking, whilst allowing the task to remain active. Below is an
example using such routines.

Example 12.1 High level message sending
{
 DitsTaskParamType TaskParams; /* Load parameters */
 SdsIdType arg;
 DitsPathInfoType info =
 { MESSAGEBYTES, MAXMESSAGES, REPLYBYTES, MAXREPLIES};
 DitsPathType path;
 ArgNew(&arg, status);

12In the older Starlink ADAM systems, control tasks were special in both their concept and
implementation, you wrote a “C Task”. This separation does not exist in DRAMA.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

80 12 Control Tasks — Getting Paths

 ArgPuti(arg, “Argument1”, 1234, status);
 strncpy(TaskParams.ProcName, “targetName",
 sizeof(TaskParams.ProcName));
 DulLoadW(targetTask, targetNode, 0, &info, targetProgram,
 0, 0, &TaskParams, TIMEOUT, &path, status);
 DulMessageW(DITS_MSG_OBEY, path, “HELLO”, arg, TIMEOUT,
status);
}

This code loads a specified program if it is not already running and sends an Obey
message to it. We will look at these higher level procedures after coming completely
to terms with the basic concepts.

It is sufficient to say at this stage that for many simple cases, the higher level routines
are more appropriate.

The first stage to understanding how to initiate messages and handle responses is to
understand the two data types DRAMA uses to manage such operations.

Transaction id’s

The first of these are the Transaction Id’s. When you initiate a message to another
task, the routine you invoke will return a transaction id. This “id” is of the integral
type DitsTransIdType. Only two things are done with variables of this type,
either they are passed to other DRAMA routines or they can be compared for equality
or to zero. Zero is always an invalid transaction id.

The primary reason for the existence of transaction id’s is to allow you to keep track
of multiple concurrent messages. When you get a response to a message, you can get
the transaction id associated with that message and work out what message is
associated with. Actions which only handle one outstanding message at a time often
ignore the transaction id.

You can associate an item of your choice with a transaction id. This item is of type
“void *” so could be used to store almost anything. If you need to store more then
one item with a single transaction, then malloc a structure, store the items in the
structure and then associate the address of the structure with the transaction. A
typical use of this associate is to allow a transaction specific routine to be invoked
when responses are received. You use DitsPutTransData() to make the
association and DitsGetTransData() to retrieve it.

Paths

To send messages to another task, you must have a communication channel to that
task. DRAMA calls this a “Path” and its type is DitsPathType. As with transaction

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 81

id’s, paths are integral types which can be compared for equality or against zero, with
zero always an invalid path. The setting up of a path involves the allocation of buffer
space and other details required for sending and receiving messages. This involves
messages being sent to and returned from the target task. As a result, this operation
involves a transaction.

As with transaction id’s, you can associate an item of your choice with a path. Use
DitsPutPathData() to make the association and DitsGetPathData() to
retrieve the data.

Setting up Paths.
The routine to initiate getting a path is DitsPathGet(). An older alternative with
less flexibility is DitsGetPath(). The calling sequence for the former routine is as
below.

Example 12.1 DitsPathGet
void DitsPathGet(
 char *name,
 char *node,
 int flags,
 DitsPathInfoType *info,
 DitsTransIdType *transid,
 DitsPathType *path,
 StatusType *status);

The “name” argument specifies the name of the task you want a path to. This name is
that which was specified by the target task when DitsAppInit() was invoked.
You can specify the machine on which the task is running using the “node”
argument, or for convenience, you can also specify it as part of the “name” argument
using the format “taskname@nodename”. The “node” argument takes
precedence.

In either case, the node name is only used if the task specified is not already known
locally. A task is “known locally” if—

• The task is running on the same machine as the program calling
DitsPathGet().

• The task is on a different machine (not necessarily the one specified in the
“node” argument) but another task on the machine where
DitsPathGet() is being invoked has already got a path to a task of the
same name.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

82 12 Control Tasks — Getting Paths

Note, this means that a given DRAMA system can have only one task of a given name
at the one time. A DRAMA system is defined as a set of communicating DRAMA
tasks, normally being run by one user (the same user name) across one or more
machines in a network. It is possible to have multiple tasks using the same name run
by the same user on different machines, as long as no attempt is made to join the
system by tasks on one machine trying to communicate with tasks being run by the
same user on the other machine.

The “flags” argument allows various options to be specified being

DITS_M_FLOW_CONTROL The connection should be flow controlled. See the

IMP documentation for more details about the effect
of flow control. XXX should expand on this.

DITS_M_PG_IMMED If set, then two cases which normally cause

transactions to start won't. The first case occurs if we
are already getting a path to the same task. In this
case, if this flag is set, instead setting up a transaction
to be triggered when the operation completes, we will
return immediately with status
DITS__FINDINGPATH. The second case is if we
already have a path to this task. In that case, we
normally set up a transaction to complete when the
path is available for sending. But, if this flag is set, we
return immediately with no transaction set up but
status ok and *transid will be zero.

The “info” argument provides associated information to the DitsPathGet()
routine, in particular, the buffer sizes, explained below. The “path” and “transid”
arguments are also explained below.

Networking

In order to get a path to a remote task, you must have the DRAMA networking
software running on both machines. These programs manage the communications
across the networks, relieving individual DRAMA programs of the complexities often
involved in network communications.

You start the networking tasks using the “dits_netstart” command, available on
all platforms on which DRAMA runs. To shutdown the networking, use
“dits_netclose”.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 83

Additionally, you should note that Unix systems do not provide proper exit handlers.
So although DRAMA tries very hard to tidy up the resources it uses, it is not always
able to. Semaphores, Shared memory, Message queues and mapped files may be left
about if a DRAMA task is killed using “kill -9” or dies under some conditions such
as “segmentation faults”. To tidy up in such cases, use the “cleanup” command.
This will tidy up all such resources (but does kill running tasks). See the “-h” option
to “cleanup” for more information.

Buffer sizes and usage

When a path to another task is set up, buffer space is allocated for messages to be sent
between the two tasks. Two buffers are involved, a buffer for sending messages to the
target task and a second buffer for replies sent back by that task.

The former buffer is allocated in the target task, using space taken from its “Global
Buffer Space”. The size of this global buffer space is set when DitsAppInit() is
invoked. Thus to get a path to a task, sufficient space must be available in the target
tasks global buffer. The “info” argument to “DitsPathGet()” allows you to
specify the size, using two values. Set the element “MessageBytes” to the number
of bytes required for a typical message to the target task. Set the “MaxMessages”
argument to the number of such messages which may be sent in the maximum time
required for the target to process one such message. Typically, values of 800 to 1000
are used for the first value and 1 to 10 for the second.

The second buffer is allocated in the task calling DitsPathGet(), using space taken
from it’s own “Global Buffer Space”. Again there are two elements in the “info”
argument, “ReplyBytes” and “MaxReplies”, with similar uses. Again typical
values for the former item are 800 to 1000. For the second value, 10 is more typical
than lower values.

In both cases, if you are sending messages with large argument structures, such as
images, you will need to increase the relevant values. The routine
DitsGetMsgLength() can be used to determine the size of a DRAMA message.

Get Path results

After a call to DitsPathGet(), there are two or three possibilities (depending on
the flags which have been set) being—

• Immediate failure. Status will be set bad. There are several possibilities, the

most common being that no node name is supplied and the task is not
known on the local machine, or that the task is remote and the network
tasks are not running.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

84 12 Control Tasks — Getting Paths

• You have to wait for completion. In this case, “*transid” is set to a non-zero

value. “path” is set to the path to the task but cannot be used until the
response is received. Normally this involves some real work, messages have
to be sent to set up the path. But in the case where the path already exists,
you are simply notified when the buffers to that path are empty, but see the
next point for more information here.

• If you specified the flag DITS_M_PG_IMMED13 then you may get a case where

status is good but “*transid” set to zero. This indicates that a path is already
available to be used and you can use it immediately

It is possible to specify a null pointer for the transid argument. In this case, you are
doing an inquiry only. The “info” argument is ignored. If your task already has a
path to the task, it is returned. If that path is useable immediately, status will be Ok.
If it is not useable (probably indicates a Get Path operation is outstanding) then status
is set to DITS__INVPATH. If the path does not exist, the status is set to
DITS__UNKNTASK and path is set to 0.

Waiting for completion

If your action must wait the completion of the Get Path operation you must set up an
action reschedule. You need to put a reschedule request, specify a new handler if
desired and enable a timeout is required before returning to the fixed part.

Example 12.2 Handling DitsPathGet
DitsPathGet(task, node, 0, &buffers, &transid, &path, status);
if (*status == STATUS__OK)
{
 DitsPutRequest(DITS_REQ_MESSAGE, status);
 DitsPutObeyHandler(PathHandler, status);
 DitsPutDelay(&timeout, status);

Here the reschedule request is DITS_REQ_MESSAGE. This request indicates we are
waiting for message.

13In older versions of DRAMA the behavior was as if this flag was always set and the flag did not exist.
From DRAMA V1.0, this was changed. In addition, from DRAMA V1.0, you may get a path to the same
task multiple times concurrently. Previously, you would get the status DITS__FINDINGPATH on
subsequence attempts to get a path before the first succeeded. It is believed that all code which worked
previously will still work, except for code which assumed the path would already be known and did not
check for a non-zero value being return for the transaction id. Such code should be changed to specify zero
(0) for the transaction id address. This will ensure no reschedule is required.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 85

Get Path handlerThe get path handler routine (put with DitsPutObeyHandler()
above) is invoked when the system has successfully set up the path, a failure has
occurred whilst setting up the path or the timeout (if specified) occurs.

You can find out the reason for the event using DitsGetEntReason(), which in
this case will return one of—

DITS_REA_PATHFOUND This indicates the path was set up successfully and you can

now send messages using the path variable returned by DitsPathGet(). You
can used DitsGetEntTransId() to get the transaction id associated with
the event, which had previously been returned by DitsPathGet(). You can
also get the path associated with the event using DitsGetEntPath().

DITS_REA_PATHFAILED This indicates the system failed to set up a path to

your task. Again you can use DitsGetEntTransId() to get the transaction
id associated with the event. You can use DitsGetEntStatus() to get the
reason for the failure.

DITS_REA_RESCHED This event type indicates a timer based reschedule,

normally used to implement timeouts. You should note that such events are not
considered errors and DitsGetEntStatus() will return STATUS__OK. In
addition, the Get Path event is still outstanding and may still occur. To
disregard it invoke DitsLosePath() on the path involved.

Having handled this event, assuming you got the success message, you are now ready
to send messages to the task in question.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 87

13.Control tasks - Sending Messages

Overview
Once you have a path to a task (see chapter 12), you can start sending messages to it.
Once again, we will examine the basic facilities provided by DRAMA. Remember
that a later chapter will introduce the higher level routines which will make many
task implementations simpler.

Message Sending Calls
The basic routine to send a message to DRAMA task is DitsInitiateMessage().

Example 13.1 DitsInitiateMessage
void DitsInitiateMessage(
 int flags,
 DitsPathType path,
 DitsTransIdType *transid,
 DitsGsokMessageType *message,
 StatusType *status);

The flags argument specifies a number of options. “path” is a path returned by
DitsPathGet(). If a message is successfully started, a DRAMA transaction is
initiated and “transid” will contain the transaction id. The details of the message to be
sent are set up in the “message” argument. These include the name of the message
(i.e. the action name in an Obey message, the Parameter name in a parameter Get
message), the message type and the SDS id of any argument SDS structure a copy of
which is sent with the message. See the routine description for full details.

The above call is the most efficient way to send a DRAMA message. This is
particularly true when the same message is to be sent multiple times as the “message”
structure need only be set up once. Note that this argument must be write able.
Although it is returned with the same value supplied on entry, it is temporarily
modified during the implementation of this function.

DRAMA provides wrap around s’ of DitsInitiateMessage() for its most
common cases. These avoid the need for the caller to allocate and initialise the
“message” structure argument. The routines provided are DitsObey(),
DitsKick(), DitsGetParam() and DitsSetParam(). They have similar
calling sequences, for example

Example 13.2 DitsObey
void DitsObey(
 DitsPathType path,
 const char name,

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

88 13 Control Tasks — Sending Messages

 SdsIdType arg,
 DitsTransIdType *transid,
 StatusType *status);

Here you specify the path, action name for the obey message and SDS structure id. A
transaction id is returned on success.

Handling message replies
Replies to any messages started using the above calls are handled in the same way as
with Get Path messages. You reschedule to await the replies and use
DitsGetEntReason() and DitsGetEntStatus() to get details of the response.
Normally, DitsGetEntReason() will return one of the following codes

DITS_REA_COMPLETE This indicates the subsidiary task has handled the message

and if an action was involved, the action has completed. The status value
returned by the subsidiary task’s action handler routine in response to the
message is available by calling DitsGetEntStatus().

DITS_REA_MESREJECTED This code indicates the target task has rejected the

message. In the case of Obey messages this indicates the subsidiary task’s user
written action code was never invoked. Again, you can get the status associated
with the error using DitsGetEntStatus(). Common causes of this
response are there being no action of the given name or the action is not
spawnable and is already active.

DITS_REA_TRIGGER This code indicates an intermediate message has been

received from the subsidiary task. If associated with an action, the action is
continuing. The subsidiary task can generate such messages using the routine
DitsTrigger().

DITS_REA_DIED The subsidiary task has died. The actual meaning in

DRAMA is that your task has lost its connection to the subsidiary task before
handling of the message originated by your task completed. Again you can use
DitsGetEntStatus() to get the details of the failure, which could indicate
the task has died or just that we have lost all connections to the machine on
which the task is running (possibly due to network failures).

As with Get Path messages, you can use DitsGetEntTransId() to get the
transaction id associated with one of these messages, that is, the value which was
returned by original DitsInitiateMessage() call. You can also use
DitsGetEntPath() to get the path to the subsidiary task. An additional call,

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 89

DitsGetEntName() allows you to retrieve the name associated with the original
message (the action name for Obey messages).

Reply Argument structures

It is possible for subsidiary tasks to associate SDS structures with reply messages, the
arguments to the reply. In the case of action handler routines, this would have been
done by calling DitsPutArgument(). See chapter 7 for details. By doing this, any
amount of information can be passed from the subsidiary task up to the originating
task. The SDS id of any such argument structure can be obtained using
DitsGetArgument(), the same call which is used to obtain the argument
associated with the original obey message. DitsGetArgument() will return the
argument associated with the message which caused the entry, hence for the first
entry to an action, it is the argument associated with the Obey message which starts
the action. For subsequent entries, it is the argument associated with the message
which triggered the entry.

If no such argument is available, DitsGetArgument() will return the null SDS id
of 0 (zero). This SDS id is free-ed implicitly when your action reschedules or
completes. Also, it refers to an external type SDS item. As a result of these features if
you need to keep the SDS structure about after you have rescheduled, you should
copy it, using say SdsCopy().

Special Reply Handling

Some replies to messages originated by your task do not result in your action being
rescheduled. They are handled transparently by the DRAMA fixed part (the Main
Loop code). Normally these messages are intended for the user interface and DRAMA
helps you out by forwarding them automatically to the originating user interface.
These messages have the following reason codes associated with them—

DITS_REA_MESSAGE These reply messages are similar to trigger messages in that

the action in the subsidiary task has not completed. They are used to send
informational messages to the user interface and are generated when the
subsidiary task invoked MsgOut().

DITS_REA_ERROR As per DITS_REA_MESSAGE, but for messages generated

using the Ers package.

It is possible to switch off the default handling of these replies using
DitsInterested(). You might do this to implement higher level features similar
to those implemented by the ERS package. In addition, you can use

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

90 13 Control Tasks — Sending Messages

DitsNotInterested() to switch on default handling of these and other reply
types. When handling these messages, the actual message for the user interface is
contained in the SDS argument structure associated with the message. These have
well defined format documented in the DITS Manual vii (see
http://www.aao.gov.au/drama/doc/ps/dits_spec_5.ps).. The DUL library (XXX)
reference) provides some help here. The various DUL library routines prefixed by
DulErs implement such a scheme. After invoking DulErsInit(), which itself
calls DitsInterested(), you invoke DulErsMessage() to handle each ERS
message. You can then use DulErsRep() and DulErsAnnul() to control such
messages. DulErsFinished() is used to revert to the normal mode, whilst
DulErsPutRequest() replaces calls to DitsPutRequest().

Simple control task example.We implement below a simple control task using
operations defined so far. Remember that the DUL routines provide simpler but less
general implementation.

This program implements a “RUN” action in addition to the normal “EXIT” action.
The “RUN” action calls DitsPathGet() to get a path to the task “DRAMAHELLO”, or
whatever task name was specified as an argument to the program. If the call to
DitsPathGet() is successful, it reschedules to await completion, specifying the
routine PathWaitHandler() as the routine to be invoked when the operation
completes.

The PathWaitHandler() routine examines the reason it was entered using
DitsEntReason(). If this indicates the path was found, it sets up an argument
structure and obeys the action “HELLO” to the task using DitsObey(). It sets up a
reschedule with the routine ObeyHandler() as the handler.

The ObeyHandler() routine also examines the reason it was entered, reporting any
error.

Example 13.3 A Simple Control Task
#include "DitsTypes.h" /* Basic Dits types */
#include "DitsSys.h" /* Initialisation functions */
#include "DitsMsgOut.h" /* MsgOut */
#include "DitsFix.h" /* For DitsPutRequest */
#include "sds.h" /* For Sds stuff */
#include "arg.h" /* For Arg routines */
#include "DitsUtil.h" /* For DitsGetErrorText */
#include "DitsInteraction.h" /* For communication stuff */

#define BUFSIZE 20000 /* Global buffer size */
#define TASKNAME "CTASK" /* Name of this task */
#define TIMEOUT 10 /* Timeout for message operations */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 91

static void Run(StatusType *status);/* Prototypes of handlers */
static void Exit(StatusType *status);

const char *targetTask = "DRAMAHELLO";
extern int main(int argc, char **argv)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Run, 0, 0, 0, 0, 0, "RUN"},
 {Exit, 0, 0, 0, 0, 0, "EXIT"} };

/*
 * The target task can be optionally specified on the
 * command line. This allows us to run this example across two
 * machines. Note, this is the ctask program command line,
 * not the “ditscmd” command line.
 */
 if (argc >= 2)
 targetTask = argv[1];

/*
 * All the normal stuff.
 */

 DitsAppInit(TASKNAME, BUFSIZE, 0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
 DitsMainLoop(&status);
 return (DitsStop(TASKNAME, &status));
}
/*
 * Default message buffer sizes.
 * See DitsAppInit and DitsPathGet routine descriptions.
 */
#define MESSAGEBYTES 400
#define MAXMESSAGES 5
#define REPLYBYTES 800
#define MAXREPLIES 12

DitsPathType HelloPath; /* Path is stored here */

/*
 * Function prototypes
 */
static void PathWaitHandler(StatusType *status);
static void ObeyHandler(StatusType *status);
/*
 * Implements the RUN action, which gets a path to the
 * targetTask and send the action DRAMAHELLO to it.
 */
static void Run(StatusType * const status)
{
 DitsTransIdType transid;

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

92 13 Control Tasks — Sending Messages

 DitsPathInfoType info = { MESSAGEBYTES, MAXMESSAGES,
 REPLYBYTES, MAXREPLIES};
 if (*status != STATUS__OK) return;
/*
 * Try for the path.
 */
 DitsPathGet(targetTask, 0, 0, &info, &HelloPath,
 &transid, status);
 if (*status != STATUS__OK)
 {
/*
 * Failure when getting path. Report and return the bad status.
 */
 ErsRep(0, status, “Failed to get path to DRAMAHELLO");
 }
 else
 {
 DitsDeltaTimeType timeout;
 DitsDeltaTime(TIMEOUT, 0, &timeout);
/*
 * Reschedule to wait for path.
 */
 DitsPutDelay(&timeout, status);
 DitsPutRequest(DITS_REQ_MESSAGE, status);
 DitsPutHandler(PathWaitHandler, status);
 }
}
/*
 * Invoked when the path wait reschedule (set up above) occurs
 */
static void PathWaitHandler(StatusType *status)
{
 if (*status != STATUS__OK) return;
 switch (DitsGetEntReason())
 {
 case DITS_REA_RESCHED:
/*
 * Timeout. We invalidate the path return. The
 * Transaction will be orphaned automatically on
 * action completion.
 */
 DitsLosePath(HelloPath, status);
 *status = DITS__APP_TIMEOUT;
 ErsRep(0, status,
 "Timeout trying to get path to DRAMAHELLO");
 break;
 case DITS_REA_PATHFOUND:
 {
/*
 * Success, send the obey.
 */
 DitsTransIdType transid;
 DitsDeltaTimeType timeout;
 SdsIdType arg;
/*
 * Create the argument to the action.
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 93

 ArgNew(&arg, status);
 ArgPuti(arg, “Argument1”, 1234, status);
/*
 * Send the obey
 */
 DitsObey(HelloPath, “HELLO”, arg, &transid,
 status);
/*
 * Set up timeout and reschedule.
 */
 DitsDeltaTime(TIMEOUT, 0, &timeout);
 DitsPutDelay(&timeout, status);
 DitsPutRequest(DITS_REQ_MESSAGE, status);
 DitsPutHandler(ObeyHandler ,status);
 break;
 }
 case DITS_REA_PATHFAILED:
/*
 * Failure. Report it.
 */
 *status = DitsGetEntStatus();
 ErsRep(0, status,
 "Failed to get path to task DRAMAHELLO:%s",
 DitsErrorText(*status));
 break;
 default:
/*
 * Something strange has happened.
 */
 DitsPrintReason(DitsGetEntReason(),
 DitsGetEntStatus(),status);
 *status = DitsGetEntStatus();
 ErsRep(0, status,
 "Unexpected entry while getting path to DRAMAHELLO:%s",
 DitsErrorText(*status));
 break;
 }
}
/*
 * Invoked to handle completion of the obey message
 */
static void ObeyHandler(StatusType *status)
{
 if (*status != STATUS__OK) return;
 switch (DitsGetEntReason())
 {
 case DITS_REA_RESCHED:
/*
 * Action has timed out
 */
 *status = DITS__APP_TIMEOUT;
 ErsRep(0, status,
 "Timeout occurred waiting for results");
 break;
 case DITS_REA_COMPLETE:
/*
 * Action had completed

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

94 13 Control Tasks — Sending Messages

 */
 *status = DitsGetEntStatus();
 if (*status != STATUS__OK)
 ErsRep(0, status,
"Action %s to DRAMAHELLO completed with error status \"%s\"",
 DitsGetEntName(),
 DitsErrorText(*status));
 else
 MsgOut(status,
 "Action %s to DRAMAHELLO completed ok",
 DitsGetEntName());
 break;
 case DITS_REA_MESREJECTED:
 case DITS_REA_DIED:
/*
 * Failure sending message.
 */
 *status = DitsGetEntStatus();
 ErsRep(0, status,
 "Action %s to DRAMAHELLO failed with error status \"%s\"",
 DitsGetEntName(),DitsErrorText(*status));
 break;
 default:
/*
 * We don't expect any other entry, output an error
 * message if one occurs. Note that ERROR and
 * INFORMATIONAL messages will be automatically
 * forwarded by the fixed part.
 */
 DitsPrintReason(DitsGetEntReason(),
 DitsGetEntStatus(),
 status);
 break;
 }
}
static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);
}

To run the above example, run one of the previous DRAMAHELLO examples, one
where the program does not exit until it receives the EXIT action. Then run this
example and use “ditscmd CTASK RUN” to initiate the Obey. The RUN action in
the above task can be invoked any number of times.

The above techniques can be used for any of the DRAMA messages. In addition,
remember that you can start multiple Get Path operations/messages in any stage of
the RUN action, using the transaction id to distinguish there responses. See the “tea”
and “coffee” example in the DRAMA DITS library source code directory. In
particular, the files ctest.c, tea.c and coffee.c.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 95

14.Loading Tasks, Handling Death

Overview
In any software system containing multiple tasks, it is probably desirable for one task
to initiate the loading of the other tasks in the system. Loading tasks is a very system
specific operation. DRAMA wraps up task loading operations in portable way whilst
at the same time supporting the loading of tasks on different machines. Additionally,
some time may pass between the program implementing a task being started and that
task calling DitsAppInit(). During this period, a call to DitsPathGet()
specifying the loaded task will fail. DRAMA helps here by providing notification to
the loading task of the target task having called DitsAppInit().

Related to task loading, is the handling the death of a task. This may occur
intentionally or due to a hardware or software error. In order to allow the building of
reliable systems, DRAMA tries very hard to ensure interested tasks are told when a
task die. This chapter addresses both these issues.

In addition, the DRAMA task load facilities help in the cleaning up after tasks which
have died. This feature is or particular interest where tasks have died uncleanly,
leaving resources allocated. The DRAMA task loading facilities ensure such resources
are deleted.

Task Loading
Generally, for task loading to work, the DRAMA networking tasks must be running.
These are started using the command “dits_netstart”. In addition to loading the
network communication tasks, transmitter and receiver, this command loads a
program known as the Imp Master task, which does the actual loading. To load a task
on another node, you must have the DRAMA networking running on both machines
involved.

Where all tasks to be loaded are running on the same machine as the loading task, the
requirement to have the DRAMA networking running is sometimes annoying. To
avoid it, you can specify the DITS_M_MAY_LOAD flag when you invoke
DitsAppInit(). This allows a task to load another program itself.

To load another task, a DRAMA task calls DitsLoad(), which has the following
format —

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

96 14 Loading Tasks, Handling Death

Example 14.1 DitsLoad
DitsLoad(
 char *Machine, /* Machine (node) to load the task on*/
 char *TaskName, /* Name of program to load */
 char *ArgString, /* Program arguments */
 long int flags, /* Load flags */
 DitsTaskParamType *TaskParms,/* Load options */
 DitsTransIdType *transid, /* Transaction id */
 StatusType *status)

In the above call, TaskName specifies the name of a program to run in a format which
will be understood by the target machine. Where the target machine is a VMS
machine, this string is either an executable file specification or a CLI command name.
File specifications can include logical names accessible to the invocation of the
DRAMA networking running on the target machine. On VMS, loaded tasks are
created by loading programs into a sub-process of the DRAMA networking Master
task.

When the target is a Unix machine, the program is a file specification accessible to the
invocation of the DRAMA networking. If prefixed with a slash “/” it is relative to the
root directory. Otherwise it is relative to the current directory of the DRAMA
networking programs. Additionally, it may specify a program in the path of the
DRAMA networking programs. Finally, environment variables may be used. If you
specify “NAME:program” then “NAME” is considered to refer to an environment
variable known to the DRAMA networking program. This environment variable is
translated and prefixed to the rest of the string to get the program name. On UNIX,
loaded tasks are created by loading programs into a process forked by the DRAMA
networking Master task.

For VxWorks targets it is assumed that object modules implementing tasks have been
loaded into memory. TaskName is a string which can be used to locate an routine
entry point on the VxWorks machine. If the VxWorks symbol table is loaded, then
this can be the routine name for the main entry point of the task. For systems
without the VxWorks symbol table, other techniques are available, see the IMP
manual for details. On VxWorks, loaded tasks are created by creating a new
VxWorks task and specifying the routine entry point as the start address.

The ArgString argument can be used to specify an argument string to be passed to the
task to be run. This string is used to set up the “command line” arguments to be seen
by the created program. You can specify NULL here if no arguments are required.
See the DitsLoad() routine description for full details.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 97

There are a number of flags which can be specified using the Flags argument. Most of
the time, you won’t need to set flags, but in some cases, things such as ambiguities in
the way an operating system treats a name need to be considered. In addition, some
flags indicate optional items in the TaskParams structure are set, such as the priority
of the task to be loaded.

TaskParams is a structured item used to pass assorted information. This includes the
name of the process into which the task is to be loaded (when the operating system
supports process names), and optional information the existence of which is indicated
by setting an appropriate flag. See the routine description for full details.

Task loading is a messaging operation— i.e. calling DitsLoad causes a message to be
sent. As with all other DRAMA messaging operations, you need to reschedule to
await the response. You will receive one or two responses, depending on the task
being loaded and DitsGetEntReason() will return one of the following

DITS_REA_LOAD The task has loaded successfully and has registered with

DRAMA (IMP). This message is only received if the task being loaded is a
DRAMA task. It is sent when the task calls DitsAppInit(). Once you
receive this message, you can get a path to the task. The name the task has
registered as (supplied to DitsAppInit()) is available to your task by calling
DitsGetEntName(). You should always use this name when you call
DitsPathGet(), rather than assume the task loaded under a particular name.

DITS_REA_LOADFAILED The load operation failed. The point at which this

is sent is somewhat system dependent but would normally indicate a failure to
find the file or a lack of resources. DitsGetEntStatus() can be used to
obtain the failure status. In addition, the routines DitsLoadErrorText()
and DitsLoadErrorStatus() can be used to obtain more information
about the failure.

DITS_REA_EXIT The task has exited. Assuming the task was loaded

successfully, this message indicates the program has now exited for whatever
reason. If DitsGetEntStatus() returns a non-zero value, then the final
exit status of the program indicates a normal completion. Otherwise
DitsGetEntStatus() will contain a bad status value and
DitsLoadErrorText() and DitsLoadErrorStatus() can be used to
obtain more information about the failure.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

98 14 Loading Tasks, Handling Death

DITS_REA_MESREJECTED Unlikely but not impossible, this reason code
indicates a failure in the processing of the load message.
DitsGetEntStatus() can be used to obtain the status associated with the
failure.

Task Loading Example
This example is a modification of the Simple control task in the previous chapter.
This time, if we can’t find the task (DitsPathGet() gives an error), we attempt to
load it before trying again. This is a common approach — check if the task is
running, if not, load it.

Example 14.2 A Control Task with Loading
#include "DitsTypes.h" /* Basic Dits types */
#include "DitsSys.h" /* Initialisation functions */
#include "DitsMsgOut.h" /* MsgOut */
#include "DitsFix.h" /* For DitsPutRequest */
#include "sds.h" /* For Sds stuff */
#include "arg.h" /* For Arg routines */
#include "DitsUtil.h" /* For DitsGetErrorText */
#include "DitsInteraction.h" /* For communication stuff */

#define BUFSIZE 20000 /* Global buffer size */
#define TASKNAME "CTASK" /* Name of this task */
#define TIMEOUT 10 /* Timeout for message operations */

static void Run(StatusType *status);/* Prototypes of handlers */
static void Exit(StatusType *status);

char targetTask[100] = "DRAMAHELLO"; /* Default task name */
char *targetProgram = "./dramahello-7";/*Default program name */
char *targetNode = 0; /* Default node to load on */
DitsDeltaTime timeout;
extern int main(int argc, char **argv)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Run, 0, 0, 0, 0, 0, "RUN"},
 {Exit, 0, 0, 0, 0, 0, "EXIT"} };

/*
 * The target task, program to load and node on which to load
 * and find the program can be optionally specified on the
 * command line. Note, this is the ctask program command line,
 * not the "ditscmd" command line.
 */
 if (argc >= 2)
 strncpy(targetTask, argv[1],sizeof(targetTask);

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 99

 if (argc >= 3)
 targetProgram = argv[2];
 if (argc >= 4)
 targetNode = argv[3];
/*
 * All the normal stuff.
 */
 DitsAppInit(TASKNAME, BUFSIZE, 0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
/*
 * Set up a timeout to be used throughout
 */
 DitsDeltaTime(TIMEOUT, 0, &timeout);

 DitsMainLoop(&status);
 return (DitsStop(TASKNAME, &status));
}
/*
 * Default message buffer sizes.
 * See DitsAppInit and DitsPathGet routine descriptions.
 */
#define MESSAGEBYTES 400
#define MAXMESSAGES 5
#define REPLYBYTES 800
#define MAXREPLIES 12

DitsPathType HelloPath; /* Path is stored here */

/*
 * Function prototypes
 */
static void GetPath(StatusType *status);
static void AttemptLoad(StatusType *status);
static void PathWaitHandler(StatusType *status);
static void ObeyHandler(StatusType *status);

static int HaveAttemptedLoad;

/*
 * Implements the RUN action, which gets a path to the
 * targetTask and send the action DRAMAHELLO to it.
 */
static void Run(StatusType * const status)
{
 if (*status != STATUS__OK) return;
 HaveAttemptedLoad = 0;
 GetPath(status);
}
static void GetPath(StatusType * const status);
{
 DitsTransIdType transid;
 DitsPathInfoType info = { MESSAGEBYTES, MAXMESSAGES,
 REPLYBYTES, MAXREPLIES};
 if (*status != STATUS__OK) return;
/*
 * Try for the path.
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

100 14 Loading Tasks, Handling Death

 DitsPathGet(targetTask, 0, 0, &info, &HelloPath, &transid,
 status);
 if (*status != STATUS__OK)
 {
/*
 * Failure when getting path. Attempt load if we have not
 * already done so, otherwise, report and return the bad
 * status.
 */
 if (HaveAttemptedLoad)
 ErsRep(0, status,
 "Failed to get path to DRAMAHELLO");
 else
 {
 ErsAnnul(status);
 AttemptLoad(status);
 }
 }
 else
 {
/*
 * Reschedule to wait for path.
 */
 DitsPutDelay(&timeout, status);
 DitsPutRequest(DITS_REQ_MESSAGE, status);
 DitsPutHandler(PathWaitHandler, status);
 }
}
/*
 * Invoked to attempt a load
 */
static void AttemptLoad(StatusType *status)
{
 DitsTaskParamType TaskParams; /* Load parameters */
 DitsTransIdType transid; /* Load transaction id */

 if (*status != STATUS__OK) return;
 HaveAttemptedLoad = 1;
 MsgOut(status, “Will attempt to load program %s",
 targetProgram);
 strncpy(TaskParams.ProcName, “targetName",
 sizeof(TaskParams.ProcName));
 DitsLoad(targetNode, targetProgram, 0, 0,
 &TaskParams, &transid, status);
/*
 * Set up timeout and reschedule.
 */
 DitsPutDelay(&timeout, status);
 DitsPutRequest(DITS_REQ_MESSAGE, status);
 DitsPutHandler(LoadHandler, status);
}
/*
 * Invoked when a load message completes
 */
static void LoadHandler(StatusType *status)
{
 char *node = targetNode ? targetNode : "localhost";

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 101

 /* Node name, for messages only */
 if (*status != STATUS__OK) return;
 switch (DitsGetEntReason())
 {
 case DITS_REA_LOAD:
/*
 * Successful load. Save the name the task registered
 * as and get the path.
 */
 strncpy(targetTask, DitsGetEntName(),
 sizeof(targetTask));
 MsgOut(status,
 "Program \"%s\" loaded and registered on node %s as %s",
 targetProgram, node, targetTask);
 GetPath(status);
 break;
 case DITS_REA_LOADFAILED:
 case DITS_REA_MESREJECTED:
/*
 * Load failed or message was rejected. Report the
 * failure
 */
 *status = DitsGetEntStatus();
 ErsRep(ERS_M_ALARM, status,
 "Program \"%s\" failed to load on node %s, status = %s.",
 targetProgram, node ,
 DitsErrorText(*status));
 if (DitsGetEntReason() == DITS_REA_LOADFAILED)
 {
 ErsRep(ERS_M_ALARM, status,
 "Associated system error is \"%s\"(%lx).",
 DitsLoadErrorText(),DitsLoadErrorStat());
 }
 break;
 case DITS_REA_EXIT:
/*
 * Task has exited (before registering in this
 * case, as a different handler is used if it
 * registered successfully). If there is no status
 * associated with it, report application error,
 * otherwise report the error.
 */
 if (DitsLoadErrorStat() == 0)
 {
 *status = DITS__APP_ERROR;
 ErsRep(ERS_M_HIGHLIGHT, status,
 “Program \"%s\" on node %s exited with status ok.",
 targetProgram, node);
 }
 else
 {
 *status = DitsGetEntStatus();
 ErsRep(ERS_M_HIGHLIGHT, status,
 "Program \"%s\", node %s exited",
 targetProgram, node);
 ErsOut(ERS_M_ALARM, status,
 "Associated system error is \"%s\"(%lx).",

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

102 14 Loading Tasks, Handling Death

 DitsLoadErrorText(),
 DitsLoadErrorStat());
 }
 break;
 case DITS_REA_RESCHED:
/*
 * Timeout during load.
 */
 *status = DITS__APP_TIMEOUT;
 ErsRep(ERS_M_ALARM, status,
 "Timeout loading program \"%s\" on node %s.",
 targetProgram, node);
 break;
 default:
/*
 * Should never happen. We have accounted for all
 * the expected reason codes.
 */
 *status = DITS__APP_ERROR;
 ErsRep(0, status,
 "Unexpected entry while loading DRAMAHELLO:%s",
 DitsErrorText(*status));
 DitsPrintReason(DitsGetEntReason(),
 DitsGetEntStatus(),
 status);
 break;
 } /* switch */
}
/*
 * Invoked when the path wait reschedule (set up by GetPath)
 * occurs
 */
static void PathWaitHandler(StatusType *status)
{
 if (*status != STATUS__OK) return;
 switch (DitsGetEntReason())
 {
 case DITS_REA_RESCHED:
/*
 * Timeout. We invalidate the path return. The
 * Transaction will be orphaned automatically on
 * action completion.
 */
 DitsLosePath(HelloPath, status);
 *status = DITS__APP_TIMEOUT;
 ErsRep(0, status,
 "Timeout trying to get path to DRAMAHELLO");
 break;
 case DITS_REA_PATHFOUND:
 {
/*
 * Success, send the obey.
 */
 DitsTransIdType transid;
 SdsIdType arg;
/*
 * Create the argument to the action.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 103

 */
 ArgNew(&arg, status);
 ArgPuti(arg, “Argument1”, 1234, status);
/*
 * Send the obey
 */
 DitsObey(HelloPath, “HELLO”, arg, &transid, status);
/*
 * Set up timeout and reschedule.
 */
 DitsPutDelay(&timeout, status);
 DitsPutRequest(DITS_REQ_MESSAGE, status);
 DitsPutHandler(ObeyHandler, status);
 break;
 }
 case DITS_REA_PATHFAILED:
/*
 * Failure. Attempt load if we have not already done
 * so. Otherwise, report the failure.
 */
 if *(HaveAttemptedLoad)
 {
 *status = DitsGetEntStatus();
 ErsRep(0, status,
 "Failed to get path to task DRAMAHELLO:%s",
 DitsErrorText(*status));
 }
 else
 AttemptLoad(status);
 break;
 default:
/*
 * Something strange has happened.
 */
 DitsPrintReason(DitsGetEntReason(),
 DitsGetEntStatus(),
 status);
 *status = DitsGetEntStatus();
 ErsRep(0, status,
 "Unexpected entry while getting path to DRAMAHELLO:%s",
 DitsErrorText(*status));
 break;
 }
}
/*
 * Invoked to handle completion of the obey message
 */
static void ObeyHandler(StatusType *status)
{
 if (*status != STATUS__OK) return;
 switch (DitsGetEntReason())
 {
 case DITS_REA_RESCHED:
/*
 * Action has timed out
 */
 *status = DITS__APP_TIMEOUT;

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

104 14 Loading Tasks, Handling Death

 ErsRep(0, status,
 "Timeout occurred waiting for results");
 break;
 case DITS_REA_COMPLETE:
/*
 * Action had completed
 */
 *status = DitsGetEntStatus();
 if (*status != STATUS__OK)
 ErsRep(0, status,
"Action %s to DRAMAHELLO completed with error status \"%s\""
 DitsGetEntName(),DitsErrorText(*status));
 else
 MsgOut(status,
 "Action %s to DRAMAHELLO completed ok",
 DitsGetEntName());
 break;
 case DITS_REA_MESREJECTED:
 case DITS_REA_DIED:
/*
 * Failure sending message.
 */
 *status = DitsGetEntStatus();
 ErsRep(0, status,
 "Action %s to DRAMAHELLO failed with error status \"%s\"",
 DitsGetEntName(),DitsErrorText(*status));
 break;
 default:
/*
 * We don't expect any other entry, output an error
 * message if one occurs. Note that ERROR and
 * INFORMATIONAL messages will be automatically
 * forwarded by the fixed part.
 */
 DitsPrintReason(DitsGetEntReason(),
 DitsGetEntStatus(),
 status);
 break;
 }
}
static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);
}

Task Death
DRAMA tries hard to notify your task if another task with which it is communicating
dies. These notifications are triggered if the task dies for whatever reason or if
communication with the machine running that task is lost. A special technique is

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 105

required to ensure quick notification if the machine on which a task is running were
to be subject to a hard reboot This is common with VxWorks machines and the
technique is described later.

There are three notifications which may occur.

Subsidiary task death

A subsidiary task is one to which your task has sent a message. If the subsidiary task
dies whist the transaction is outstanding, the transaction will complete immediately
and your action will be invoked. DitsGetEntReason() will return
DITS_REA_DIED. Both the previous control task examples handle this possibility.
DitsGetEntStatus() will return the status associated with the loss of the task.

Loaded task death

If a task you have loaded dies, then the action which loaded the task will be
rescheduled. DitsGetEntReason will return DITS_REA_EXIT or
DITS_REA_LOADFAILED, depending on when the failure occurred.
DitsGetEntStatus(), DitsLoadErrorText() and
DitsLoadErrorStat() can be used to obtain more details of the failure.

Parent task death

Here we are talking about the death of a task which has invoked an action in your
task, and where that action has not yet completed. The Kick handler of any such
action will be invoked, if there is one. DitsGetEntReason will return
DITS_REA_DIED. If there is no Kick handler, the parent task’s death is ignored. In
either case, it is no longer possible to get message through to the user interface in the
normal way.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 107

15.Control task tidbit’s

Overview
The previous chapters have introduced the basic concepts and routines involved in
building DRAMA control tasks. DRAMA provides an assortment of other routines
which implement special features or wrap up the basic routines for the more common
cases. This chapter looks at these facilities.

Action Blocking Techniques
Most complex DRAMA programs make extensive use of action staging to handle
reception of incoming messages. This is by far the most efficient technique available
to DRAMA. However, this approach tends to make simple programs more
complicated. What is sometimes required is the ability for an action to “Block”,
whilst waiting for messages. This will allow a simple serial flow of control though
action. At the beginning of chapter 12, you were shown high level interfaces using
such techniques to simplify control tasks. Note here we are talking about the action
blocking, not the task. Your task can continue to process messages and actions.

The generalised technique here is for your action to initiate all the transactions it
wishes and then for the action to block to await the responses. The action is
unblocked when any messages arrive and must loop through the event code if more
then one such message is expected.

The call to use is DitsActionWait(). When you invoke this routine, it blocks
the invoking action until a message is received for it. When such an event occurs, the
action is unblocked and you can process the message in the normal way. The use of
this routine has two significant effects on your task. First, this routine is somewhat
less efficient then staging. This should be considered in programs which have to be
very responsive. The inefficiency is due to this approach being dramatically different
to the normal DRAMA approach to message handling. The second effect of concern
is that if you have multiple actions blocking, they will be unblocked in the reverse of
the blocking order, regardless of which action has message waiting. Thus, one action
can lock another, you cannot get around this problem, even by kicking the earlier
action or invoking DitsKill() on it.

Regardless of the problems mentioned above, this feature is useful, particularly for the
simple case of sending one message and waiting for the response. It has been used as
the basis of higher levels routines which make the control task examples in the
previous chapters much shorter. See the following example.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

108 15 Control task tidbit’s

Example 15.1 A Control task with Action Blocking
#include "DitsTypes.h" /* Basic Dits types */
#include "DitsSys.h" /* Initialisation functions */
#include "DitsMsgOut.h" /* MsgOut */
#include "DitsFix.h" /* For DitsPutRequest */
#include "sds.h" /* For Sds stuff */
#include "arg.h" /* For Arg routines */
#include "DitsUtil.h" /* For DitsGetErrorText */
#include "DitsInteraction.h" /* For communication stuff */
#include "dul.h" /* For Dul library */

#define BUFSIZE 20000 /* Global buffer size */
#define TASKNAME "CTASK" /* Name of this task */
#define TIMEOUT 10 /* Timeout for operations */

static void Run(StatusType *status); /* Prototypes of handlers */
static void Exit(StatusType *status);

char targetTask[100] = "DRAMAHELLO";
char *targetProgram="./dramahello-7";
char *targetNode=0;
DitsDeltaTimeType timeout;

extern int main(int argc, char **argv)
{
 StatusType status = STATUS__OK;
/*
 * Define the actions supported by this task.
 */
 static DitsActionDetailsType Actions[] =
 { { Run, 0, 0, 0, 0, 0, "RUN"},
 { Exit, 0, 0, 0, 0, 0, "EXIT"} };

 if (argc >= 2)
 strncpy(targetTask, argv[1],sizeof(targetTask));
 if (argc >= 3)
 targetProgram = argv[2];
 if (argc >= 4)
 targetNode = argv[3];

 DitsAppInit(TASKNAME, BUFSIZE, 0, 0, &status);
 DitsPutActions(DitsNumber(Actions),Actions, &status);
 DitsMainLoop(&status);
 return (DitsStop(TASKNAME,&status));
}
/*
 * Default message buffer sizes. See DitsAppInit and
 * DitsPathGet
 */
#define MESSAGEBYTES 400
#define MAXMESSAGES 5
#define REPLYBYTES 800
#define MAXREPLIES 12

static void Run(StatusType * const status)
{

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 109

 DitsTaskParamType TaskParams; /* Load parameters */
 int flags = 0; /* Load flags */
 SdsIdType arg;
 DitsPathInfoType info =
 { MESSAGEBYTES, MAXMESSAGES,
 REPLYBYTES, MAXREPLIES };
 DitsPathType path;

 ArgNew(&arg, status);
 ArgPuti(arg, “Argument1”, 1234, status);

 strncpy(TaskParams.ProcName, “targetName",
 sizeof(TaskParams.ProcName));

 DulLoadW(targetTask, targetNode, 0, &info, targetProgram,
 0, flags, &TaskParams, TIMEOUT, &path, status);
 DulMessageW(DITS_MSG_OBEY, path, “HELLO”, arg,
 TIMEOUT, status);
}

static void Exit(StatusType * const status)
{
 DitsPutRequest(DITS_REQ_EXIT, status);
}

The above example performs exactly the same function as the example 14.2. It
attempts to get a path to a program and if that fails, it loads the program before trying
again to get a path. It then sends an obey message to the task.

The routine DulLoadW() takes a combination of the arguments to
DitsPathGet() and DitsLoad(). It calls both of these routines, using
DitsActionWait() to wait for the responses. The DuiMessageW() sends a
message and waits for the completion of the transaction before returning. In both
cases you can supply a timeout as a floating point value.

Orphaned Transactions
We have seen several ways for a DRAMA program to send messages to other tasks, be
they OBEY/ KICK /GET /SET /MONITOR/ CONTROL messages, Get Path messages
or Task Load messages. In all cases, the action which sent the message is considered
the parent action and the message initiated is a transaction within another task. The
message sending routines normally return a transaction id, which allows you to relate
responses to your message (reschedule events) with the original message. As a result,
you can have any number of transactions outstanding from one action.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

110 15 Control task tidbit’s

A major implication of this is that normally actions which initiate messages continue
to reschedule until they have handled all outstanding responses. But sometimes this
is impractical. In most of the previous control task examples, timeouts were
implemented throughout. If a response did not occur in the specified time, the action
would be rescheduled anyway and would report an error before exiting. Of course
the outstanding message could arrive at any time, or never. Since the parent action
no longer exists, there is no clear place to deliver the response. DRAMA calls
transactions whose parent action has completed “Orphaned transactions”.

Handling orphaned transactions

DRAMA provides various facilities to handle events related to orphaned transactions.
The default behaviour is for DRAMA to print a message on “stderr” . In the
simpler tasks, this is all you will want as transactions are normally only orphaned
when things go wrong.

In a complex system, you may want to provide more appropriate handling of
orphaned transactions. You will probably want to catch errors and output
appropriate messages.

The first such approach is to provide a orphan handler routine. This is done by
invoking DitsPutOrphanHandler(). This routine takes only two arguments, a
routine of type DitsActionRoutineType and a status variable. It returns the
previous orphan handler routine. The supplied routine will be invoked as a user
interface (UFACE) context event handler routine. UFACE context is described in
more detail in a later chapter.

The second approach to orphans is for a specify an action in your program to become
the parent for all orphan transactions (to “adopt” the orphans). This is done by having
the selected action invoke DitsTakeOrphans(). The first argument to this
routine is an enumerated type with the following possible values

DITS_TAKE_CURRENT The action will take over open of all currently known

orphan transactions. It does not take over any transactions
made orphans after this call.

DITS_TAKE_FUTURE The action will become the parent of any transactions made

orphans from the time if the call onwards.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 111

DITS_TAKE_BOTH The action takes over ownership of all currently orphaned
transactions as well as any transactions made orphan from
the time of the call onwards.

Once an action takes over ownership of orphan transactions, any events relating to
such transactions are delivered to the action as if the transactions were it’s own
subsidiary actions. The only way you can tell the difference between an action which
was orphaned and one which has not been orphaned (a transaction which was
actually started by the action handling the orphans) is to use the call
DitsIsOrphan(). This routine takes the transaction id returned by
DitsGetEntTransId() and returns true if the transaction was “adopted”. One
important point to remember here, the orphan action must remain active, i.e., it must
reschedule to await orphan transactions. If it completes, the adoption is forgotten.

Creating orphans on purpose

There are some cases where you have started a transaction but are not interested in
the results. For example, when loading tasks using DitsLoad() there are often
two messages expected — the one which indicates a task has loaded and the one
which occurs when a task has died. You will normally want to wait for the first such
message but may not be interested in the second. One thing you could do is just cause
the action which invoked DitsLoad() to complete, which will make the
transaction an orphan.

But, in some cases, you will want your action to continue, but not receive any more
events from the DitsLoad() operation. You disown the transaction by invoked
DitsForget().

.

Buffer Full handling
A task receiving messages may not be able to handle messages as fast as the send can
generate them. Eventually, the sender will find the buffer it is writing to full. This
may occur for both local and remote receiving tasks. For the former, the case is more
complex due to the involvement of the network. The slow point may either be the
network or the receiving task.

There are a number of approaches to solving this problem. First, you could increase
the size of the buffer you are sending too. This works in many cases but is a bit ad-
hoc and won’t work forever (if the sender never lets up and the receiver can run fast
enough, you will always run out of buffer space.)

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

112 15 Control task tidbit’s

Alternatively, you can slow down the sending task. This works but is often not
desirable as the receiver speed may depend on various factors, machine loading etc.

In addition, you could make the sending task retry after a failure to send a message,
possibly with delays between each attempt. But this is a “dirty” approach, effectively
polling for buffer space.

The best solution is for the sending task to be able to arrange to be notified when the
receiver’s buffers are empty. It can then send its message. DRAMA supports this
approach using the DitsRequestNotify() routine. You should call this routine
if you receive the DITS__NOSPACE status code when attempting to send a message
(from DitsObey() etc). You specify the path you were trying to send the message
along. You then return to await a reschedule event, where DitsGetEntReason()
will return DITS_REA_NOTIFY.

The “Notification” technique is used automatically for action completion and error
messages, ensuring that such messages are always sent, even though they may arrive
late.

When remote tasks are involved, you must specify if the notification technique is to
be used when a path is set up. This is necessary as network connections using
notification are less efficient than connections without notification. A flag to
DitsPathGet() allows control over paths allocated by the sending task. Flags to
DitsAppInit() effect connections to this task and the default for the older
DitsGetPath() routine. The default flags to DitsAppInit() make connections
to the task in question flow controlled but connections made by DitsGetPath()
not flow controlled.

You cannot send a message on a connection for which a notification message has been
requested. Again, for action completion and error messages, this is handled
transparently. For other cases, you will an get error code, being on of

XXX

Two routines may help you determine appropriate buffer sizes for you tasks. The
routine DitsGetPathSize() returns the maximum number of bytes which may
be written to a path, assuming it is empty. The routine DitsGetMsgLength()
indicates the size of a given message. Here you supply SDS id of the argument
structure you intend attaching to the message. You must also indicate if the message

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 113

will be a reply message (sent using DitsTrigger() or DitsPutArgument()) or
a message initiated by this task (DitsObey() etc.).

Creating non-blocking programs
Tasks will behave better if they are always responsive to user commands. For
example, having started a CCD exposure, the user may want to abort it or stop it at
any time and expects things to work without hangs and pauses. In the standard
DRAMA approaches, achieving this requires that time consuming activities are
broken up using the rescheduling technique. Unfortunately such a style is not always
possible or is sometimes very inefficient.

If you don’t have the source code for a time consuming action, then DRAMA is
limited in what it can do to help. The standard approach in this case would be to put
the call to the time consuming routine in a separate task which only does that job for
you. The parent task creates this task when necessary and can delete it using
DitsDelete() if required to abort the operation.

Queue Peeking

In cases where you do have the source, DRAMA can help in a couple of ways.
DRAMA allows you to “peek” at the messages in the queue and act accordingly. In
the simplest case, you may desire that your program only reschedule when there is
actually a message waiting for you. The routine DitsMsgAvail() can be used to
determine this. It returns true if there are any messages waiting for the task.

Alternatively, you may only be interested in some particular messages, say a kick of
your own action. Here you can use the routine DitsPeek(). This routine allows
you to look for different messages in the message queue. It can handle some types of
message immediately. Flags to this routine provide a lot of flexibility, so I refer you to
the documentation of the routine.

Getting and Setting Parameters
Parameter values can be fetched using the DitsGetParam() routine. This has a
similar interface to the DitsObey() routine and the value of the parameter is
returned in the argument structure associated with the reply message. This SDS
structure is of a type which can be accessed using the ARG routines, with the name of
the relevant value being the name of the parameter.

Similarly, you can use DitsSetParam() to set the value of a parameter. You
supply an argument structure which contains the new value of the parameter. It is
up to the parameter system of the target task to determine if the value is acceptable.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

114 15 Control task tidbit’s

The reply message is just used to indicate success/failure, with no value being
returned.

Multiple Parameter Get

As a convenience, you can get the values of multiple parameters with a single
messages. XXX What is the interface XXX

The value returned with the success messages is again compatible with the ARG
library, with in this case, a named entry for each parameter fetched.

Long parameter names

Normally, parameter names are limited to the same length as action names, being
DITS_C_NAMELEN (20) characters including a terminating null. However, in some
parameter systems it is desirable to allow longer parameter names. For example, in
the SDP parameter system, longer names are used to support getting and setting the
values of parts of a structured parameter. DRAMA provides a protocol to allow
parameter systems to support long parameter names. The DRAMA routines
DitsGetParam() and DitsSetParam() support long names transparently but
other routines may not, in particular, any which uses the structure type
DitsNameType to pass the action name to the routine. As a result, you need to
know the protocol.

For messages to get the value of a parameter, the approach is to use the Multiple
Parameter Get protocol, but to specify the long name. You don’t have to specify
multiple parameters to use this protocol and any parameter may have a long name.

For setting parameters, things are a bit more complicated. XXX How XXX

Task types and descriptions
You can give a task a type and a description. . A task type is potentially useful in
situations where there may be multiple tasks doing a similar job and you are
interested in sending messages to all such tasks which are registered or any task of the
same type. The task type is just an integer item. DRAMA does not define any values,
it is up to system designers to do so. Types also allows the use of a “Generic”
interface, without having to rely on task names to the task type. For example, you
may define a task type for a “Telescope Autoguider”. There may be several different
Autoguiders, depending on the instrument being used. To avoid define that all such
tasks should have the same name, you could just define a type and look for a task of
that type.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 115

Whist a task type is an integer value, enabling easy comparison, a task description is a
character string. You can use this string for any purpose you desire, for example, to
allow a utility to list details on all task present on a system.

You can set the type and description of a task using the function
DitsSetDetails(). The default type for a task is zero.

Given a task’s name, you can get it’s type using DitsGetTaskType(). Likewise,
you can use DitsGetTaskDescr() to fetch the description of a task.

Finding tasks.
Here I am referring to finding a task such that you can get a path to that task. For this
to work, the task in question must already be known on the machine your task is
running. i.e., it must be running on the same machine or if it is remote, a task on the
machine must have already got a path to the target task14.

The simplest case is where you want to find the name the first task of a given type.
This can be one using DitsFindTaskByType(), which takes the type of the task
you are looking for and returns the name of the first task of that type, if one of that
type was found. Note that failure to find the task is not considered an error, a flag
argument will indicate if a task was found.

A more complete interface is provided by DitsScanTasks(). This routine allows
you to loop scanning the details of all tasks known to the machine. Each call to the
routine returns the details of the next task. Details returned include the task name,
task type and task description. See the routine description for more details.

The real tidbit’s

14A future version of DRAMA may remove the restriction.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 117

16.Handling large data transfers

Overview
Chapter not written yet..

Example 16.1 TBD
/*

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 119

17.The C++ Interface

Overview
Those writing DRAMA programs in C may wonder if DRAMA would have been
better implemented in C++. DRAMA has objects (tasks and parameters), messages
sent to those objects, and to some extent, the ability to implement inhertance (See the
GIT library). Unfortunately, DRAMA is intended to be very portable and the C++
ANSI Standard was no where near complete, much less supported by compiler
vendors, when work on DRAMA was commenced. After much thought, we
determined that C was the only language which addressed all the architectures we
needed to support in a consistent enough way.

That having been said, there is nothing to stop one using C++ to implement a
DRAMA program. That DRAMA program will not be as portable as DRAMA itself,
but that may not matter. The DRAMA C API is completely accessible from C++,
largely because the header files are compatible. Here you are using the DRAMA C
API as you would any other C API within a C++ program.

To help implement such programs, DRAMA provides various C++ classes which
provide better implementations of some DRAMA features. These classes are just wrap
arounds of the DRAMA C API, but having chosen to use C++, these classes provide a
better interface.

Some of the standard libraries provide C++ wrap arounds. The SDS, ARG, SDP and
GIT libraries. In addition, the DCPP library provides an interface to some of the
DITS level DRAMA features. These interfaces are implemented to use one of the
most common sub-sets of C++. The provision of Exceptions, Namespaces, Templates,
Run Time type identification and the bool type by the compiler are NOT required.
In some cases, DRAMA may make use of these features if available.

It must be noted the DRAMA’s C++ interfaces are under active development and
some problems have been noted with them (conceptual problems, not bugs). There
will probably be an entirely new C++ interface at some stage which will be easier and
much more Object-Oriented in approach. The work in this area is currently being
done in JAVA and will be converted to C++ at some stage. As part of these changes,
and alternative to the Dcpp package will be produced.

SDS and Arg C++ Interfaces

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

120 17 C++ Interface

The class SdsId provides a C++ interface to SDS. Each C++ SdsId type variable
represent an SDS ID (C type SdsIdType), not a complete SDS structure to which
many SDS ID's may point. Each operation in the SDS C library which allocates an
SDS ID maps to a constructor in the SdsId class (this mapping is not one-to-one).
An additional constructor is provided to import an existing SdsIdType into an
SdsId variable. Member functions are provided for all the standard SDS operations.

The major benefit of the SdsId class is the use of the destructor to tidy up. When
using SdsId's, you don't normally have to worry
about deleting SDS items and freeing SDS ID's, as this is done automatically when the
variable goes out of scope. Consider the following bit of C code, which will read an
Sds item from a file, find the substructure named “fieldData” and list it using
SdsList(). It goes to some trouble to ensure it tidies up correctly, even if a failure
occurs part way through.

Example 17.1 SDS Error handling in C
/* List the item "fieldData" within the specified SDS file */
extern void CStyle(const char *filename, StatusType *status)
{
/* Read an Sds item from filename */
 SdsIdType fileId;
 SdsRead(filename,&fileId,status);
 if (*status == STATUS__OK)
 {
 /* Read was ok, find fieldData. */
 SdsIdType fieldId;
 StatusType ignore = STATUS__OK;
 SdsFind(fileId,"fieldData",&fieldId,status);
 if (*status == STATUS__OK)
 {
 StatusType ignore = STATUS__OK;
 /* Find ok, list the item and tidy up. */
 SdsList(fieldId,status);
 SdsFreeId(fieldId,&ignore);
 }
 /* Tidy up from read */
 ignore = STATUS__OK;
 SdsReadFree(fileId,&ignore);
 SdsFreeId(fileId,&ignore);
 }
}

The same function written using the SdsId class is-

Example 17.2 SDS Error handling in C++
/* List the item "fieldData" within the specified SDS file */
extern void CppStyle(const char *filename, StatusType *status)
{
 /* This constructor reads an Sds item from a file */
 SdsId fileId(filename,status);

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 121

 /* This constructor finds the item fieldData */
 SdsId fieldId(fileId,"fieldData",status);
 /* List the field item */
 fieldId.List(status);
}

The SdsRead() call occurs within the first constructor, while the SdsFind()
operation occurs in the second. In both cases, flags kept in the SdsId variable
indicate how the item was allocated, allowing the destructors invoked implicitly at
the end of the routine to clean up. When routines which must navigate large
structures are considered, the benefits are even more dramatic.

Inherited Status with constructors

You will notice in the above examples, that all the constructors include an inherited
status argument. This is an unusual approach as in C++, it is normally assumed that a
constructor either works or an exception is thrown. As mentioned above, the
DRAMA C++ implementation does not assume exception support, which is not
available under all C++ compilers. But, all the underlying C API calls have an
inherited status argument. To support this, the constructors and destructors make use
of a null SDS ID. If status is bad on entry or is set bad during the constructor, the type
is still constructed, but with the null SDS ID. When the destructor is invoked, it sees
the null SDS ID and does nothing.

Assignment and Copying

Assignment and copying of variables of this type has been prohibited by making the
corresponding operators private to the class. This is done because

• It is not always clear what the user may want done (a deep or shallow copy
for example)

• Handling of errors requires a status variable which is not available in these
operations.

One result of this is that you cannot pass variables of this type to subroutines by
value, you must pass them by either pointer or reference.

The member functions ShallowCopy() and DeepCopy() provide explicit
control of copy and assignment operations and provide the required Status argument
in the case of DeepCopy().

In the case of the ShallowCopy(), in which the actual Sds Id is copied, you must
indicate if the copy variable is to outlive the source. This is necessary since if it is to
do so then the copy must be responsible for any required deletion and freeing

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

122 17 C++ Interface

operations, not the original variable. The function will make the necessary
modifications to both variables to ensure the destructors work as required.

The DeepCopy() function uses the C function SdsCopy() to create a new
structure which is a copy of the source structure.

In both cases, a destructor is automatically run on the Target SdsId variable before
the copy is made. Alternatively, you can make use of a constructor which makes a
deep copy of its argument to construct a new item.

Importing from SdsIdType variables

Normally, the constructor for an SdsId item can work out what should be done
with an item when the destructor is invoked. But when SdsIdType variables are
imported into an SdsId type, this is not possible. A special construstor is required.

The following constructor is used to create SdsId variables using an Sds id taken
from an SdsIdType variable.

SdsId(SdsIdType id, bool free, bool del, bool readfree);}

You must use the three flags to tell SdsId how to handle this id in it's destructor. If
free is set true, the id is free-ed by the destructor using SdsFreeId(). If del is
true, then the item will be deleted using SdsDelete() or SdsReadFree(). The
readfree flag is set true to indicate that SdsReadFree() should be used instead
of SdsDelete(). All these flags have default values of false, telling the destructor
to do nothing.

The following bit of code uses a call to GitArgGetStruct() to return an SDS id.
We then setup an SdsId item to access it. Since the id returned by
GitArgGetStruct() must be free-ed, but not deleted by the user when he is
finished with it, we set the free flag to true and leave the rest of the flags at their
default false values.

Example 17.3 Importing SdsIdType variables
SdsIdType id = 0;
char detailsName[30];
GitArgGetStruct(DitsGetArgument(), "XyDetails", 2, 0,
 sizeof(detailsName), detailsName, &id, status);
SdsId detailsId(id,true);

An alternative way to import a SDS id represented by a SdsIdType variable into an
SdsId variable is the use of versions of the ShallowCopy() and DeepCopy()

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 123

member functions which take an SdsIdType source instead of an SdsId source.
The DeepCopy() function is otherwise equivalent to the standard case of an SdsId
source. The ShallowCopy() function is similar to the constructor mentioned
above in that you must specify flags which indicate what should happen to the ID
when the variable goes out of scope.

Exporting to SdsIdType variables

In order to export the SDS ID represented by an SdsId variable to an SdsIdType
variable, use the member function COut().

 COut(bool outlives, SdsIdType *id, bool *free,
 bool *del, bool *readfree);}

This function returns the appropriate SdsIdType in the id variable. You must
indicate if the SdsIdType variable will outlive the SdsId variable by setting the
outlives flag true. This will ensure that the destructor for the SdsId variable
does not free the ID. You can make use of the other arguments to determine what
you should do with the ID in the case of it outliving the source. The flag pointers are
optional and if set to the default of 0, are ignored, but otherwise indicate what the
destructor would have done.

An alternative to COut() in the situation where it is clear the source variable will
outlive the target is the conversion operator which will return an SdsIdType. This
operator allows SdsId variables to passed to any function which expects an
SdsIdType.

Static and Global variables

It is normally not appropriate to construct complex items, such as SDS structures, in
the constructors of static and global items. In such cases, the default constructor
allows you to define an SdsId which represents a null Sds ID. Your initialisation
code can then construct the item into a local variable and use ShallowCopy() to
copy it into the global. For example

Example 17.4 Shallow copy into Static SDS id
static SdsId paramId;/* Static item using default constructor */

/* Create the item an copy it to the static item*/

SdsId top("TOP",SDS_STRUCT,status);
paramId.ShallowCopy(top,true); /* paramId outlives top */

You can check if a object is initialised using the boolean operator. It returns true if
the object is initialsied.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

124 17 C++ Interface

Arg

The Arg class is derived from SdsId. Only two constructors are available. One of
these is identical to the SdsId import constructor described above (This also
implements the default constructor in both cases, using argument defaults).

The second constructor is used to create a new argument structure. Its first argument
is a dummy logical argument, which can be given any value. Its purpose is to
distinguish this constructor from the default constructor. The second argument is a
status argument. The third argument is optional and allows you to specify an
alternative name for the top level structure. The default is ``ArgStructure'', as
normally used by the ArgNew(3)} function.

Member functions allow you to create a new structure using an existing item, write
an item to a string and put and get the value of an item. The following code creates a
new Arg variable and puts the value “TRUE” into it as a character string

Example 17.5 Using Arg C++, creating structures
Arg arg(true,status);
arg.Put("Argument1","TRUE",status);

Remember that all the standard member functions of the SdsId class are also
available.

Sdp
The Sdp class is a simple interface to the Simple DITS Parameter system (see the
DITS manualviii - http://www.aao.gov.au/drama/doc/ps/dits_spec_5.ps). There are no
constructors, just static member functions which make use of overloading to select
the appropriate interface to Sdp. The implicit object you are operating on is the
parameter system.

You should use calls like these-

Example 17.6 Using Sdp C++
static long c;
Sdp::Put("FRED",1,status);
Sdp::Get("FRED",&c,status);

Git
A number of classes are defined in the Git include file. The base type Git provides a
simpler way of specifying the various flags used by the equivalent of the
GitArgGet* functions (\cite{GIT_SPEC}).

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 125

GitBool

This class implements a boolean type which includes a member function to fetch
values from an SDS structure using GitArgGetL(). This class provides a simpler
interface to fetching boolean values from string or integer values in SDS structures.

The following code shows the declaration of a GitBool variable and the fetching of
the value from an SDS item. (Note that
since a conversion exists for SdsIdType to SdsId we can use
DitsGetArgument() directly to get the SDS id).

Example 17.7 Using GitBool
GitBool Flag;
Flag.Get(DitsGetArgument(), "CONFIRM",1,status);
if (Flag) /* Make use of conversion to bool operator */
 ...

Alternately, the constructor can do the Get operation immediately, allowing the
above code to be replaced by

Example 17.8 Using GitBool constructor
GitBool Flag(DitsGetArgument(), "CONFIRM",1,status);
if (Flag)
 ...

In both the above cases, the strings accepted as True and False are as specified by
GitBool (just “TRUE” and “FALSE” themselves). The following example shows the
definition and usage of a class
(ParkBool) which inherits GitBool but provides alternative True and False value
strings (PFA/ZENITH).

Example 17.8 GitBool alternative strings
class ParkBool : public GitBool {
 private:
 static const GitLogStrType lookupTable[];
 const GitLogStrType * Lookup() { return lookupTable;};
 public:
 ParkBool(const SdsId & Id, const char * const Name,
 const int Position, StatusType * const status,
 const int Flags = Git::Upper|Git::Abbrev))
 //Use Get not constructor, see C++ Ref manual r.12.7
 : Get(Id,Name,Position,status,false,Flags){ }
};
/* Define the static item defined in ParkPool */
const GitLogStrType ParkBool::lookupTable[] = {
 { "PFA", "ZENITH"},
 { "TRUE", "FALSE"},
 { 0, 0 } };

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

126 17 C++ Interface

/* Using the value*/
ParkBool Position(DitsGetArgument(), "ZENITH",1,status);
if (Position)
...

GitEnum

This class implements an enumerated type which includes a member function to fetch
values from an SDS structure using GitArgGetS(). This class provides a simpler
interface to fetching enumerated values from strings in SDS structures. This is a
virtual base class — the user must provide a class which inherits this class and
provides implementations of the functions SetValue() and Lookup().

The following code shows the definition of a class based on GitEnum, which
interfaces to a enum with the values “Record}”, “Dummy” and “Glance”.

This particular example uses the constructor to do the get, hence it bans the default
constructor by making it private. This is purely an issue for this particular example.
You could provide an interface to the Get function and allow them. By making the
recEnum enum definition public and providing an operator which returns the value,
you could switch on this type instead of using the “Is” series of functions.

Example 17.9 Using GitEnum
class RecType : public GitEnum {
 private:
 /* enum possibilities */
 enum recEnum { Record=0, Dummy, Glance, Invalid };
 /* value contains the actual value */
 recEnum value;
 /* Lookup table returns the list of strings */
 static const char * const lookupTable[];
 /* Conversion operator, given enum, return an int */
 operator int() const { return ((int))value));

 /* return the lookup table address. Used by */
 /* GitEnum::Get */
 const char * const * Lookup() { return lookupTable;};

 /* Set value, used by GitEnum::Get */
 void SetValue(const unsigned int i) {
 if (i >= Invalid)
 value = Invalid
 else
 value = (recEnum)i;
 }
 /*
 * Since our constructor does a get, we prohibit the
 * default constructor and and assignment operators
 */

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 127

 RecType();
 RecType& operator=(const RecType &);
 public:
 /* The constructor - does a get */
 RecType(
 const Sds& Id,
 const char * const Name,
 const int Position,
 StatusType * const status
 const char *Default = “RECORD”,
 const int Flags=Git::Upper|Git::Abbrev) {

 Get(Id,Name,Position,status,Default,Flags);
 }
 /* Tests for enumerated values */
 bool IsRecord const { return (value == Record);}
 bool IsDummy const { return (value == Dummy);}
 bool IsGlance const { return (value == Glance);}

};
/* Define static item declared above */
const char RecType::lookupTable[] = {
 "RECORD", "DUMMY", "GLANCE", 0 },

/* Using the class */
RecType recType(DitsGetArgument(), ”RECORD_TYPE”, 1 ,status);
if (recType.IsRecord())
...

GitInt and GitReal

These classes implement integer and floating point types respectively which include
member functions to fetch values from an SDS structure using
GitArgGetI()/GitArgGetD(). These classes provide simpler interfaces to
fetching integer and real values from Sds structures. (Note that at present, the
implementation of these types is probably not complete, not all integer/real
operations can be performed, although you can convert them to int/double as
appropriate.

You can use these classes directly, in which case there are no limits to the range of the
value read other then what can be represented in the relevant type. A more common
usage is to sub-class this class in order to limit the range.

The following code shows the definition of a class based on GitInt, which interfaces
to an integer range limited to between 1 and 100000. GitReal works in an almost
identical way.

Example 17.10 Using GitInt
/*
 * Repeat mode count integer

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

128 17 C++ Interface

 */
class RepCount : public GitInt {
 private:
 virtual const long int * Range() { return range; }
 static const long int range[];
 public:
 /* Constructor with automatic get */
 RepCount(
 const SdsId& Id,
 const int Position,
 StatusType * const status,
 const int Default = 1,
 const int Flags = Git::KeepErr) {
 GitInt::Get(Id,"REPEAT_COUNT",Position,
 status,Default,Flags);
 }
 /* Simple constructor, defaulting to a value of 1 */
 GctRepCount(const long int def = 1) : GitInt(def){}
 /* Get function */
 void Get(
 const SdsId& Id,
 const int Position,
 StatusType * const status,
 const int Default = 1,
 const int Flags = Git::KeepErr) {
 GitInt::Get(Id,"REPEAT_COUNT",Position,
 status,Default,Flags);
 }
 /* Pre-decrement operator */
 GctRepCount operator--() {
 long int value = *this;
 *this = GctRepCount(value-1);
 return value;
 }
};
/*
 * Define static item defined above
 */
const long int GctRepCount::range[] = { 1,100000};

/* Using the Class */
GctRepCount RepeatCount(id,6,status);

DCPP
The DCPP (DITS C Plus Plus) set of classes implement a C++ interface to the DITS
task communication functions. The scheme implemented allows you to send a
message specifying callback functions to be invoked when responses are received.
You can specify particual callback functions to handle particular responses.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 129

We define a “Thread of control” as being the handling of response messages in
relation to a message sent by our task. Assuming the thread of control is setup
correctly, your callback functions will be invoked automatically. The callback
routines return a code which indicate whether of not they are expecting further
messages on the current thread of control.

The basic message sending call is DcppTask, which hides much of the work
required to communicate with another DRAMA task. It can even hide an automatic
load operation within a Get Path operation. An additional class — DcppMonitor —
can be used to manage parameter monitors.

There are two types of control thread. First are normal DRAMA actions. In this case,
you should install a variable of class DcppHandler to manage action rescheduling.
This class will automatically invoked your callback handlers when messages arrive,
only causing your action to complete when a callback handler indicates no more
rescheduling is required.

The other type of control thread is UFACE context routines. Only people writing
user interface code need be concerned with these threads. See UFACE Chapter
XXXX and DITS_SPEC XXXX for more details on UFACE context. To use DcppTask
based communications from UFACE threads, you should use the
DcppUfaceCtxEnable() routine in place of the routine
DitsUfaceCtxEnable().

A task communication example

This example shows a very simple example of communication with a task using the
DcppTask class. Below is an extract from the source code. All this example does is
get the path to a task and send an obey to it.

Example 17.11 Using Dcpp
static DcppHandlerRet StartObey(�
 DcppVoidPnt ClientData,
 StatusType * const status);

static DcppTask ticker("TICKER",0,"DITS_LIB:ticker"); �
static DcppHandler Handler; �

static void DpRun(StatusType * const status) �
{
 Handler.Install(status); �
 if (ticker.GetPath(status,StartObey) == DcppReschedule)
 {
 DitsPutRequest(DITS_REQ_MESSAGE,status);
 }
}

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

130 17 C++ Interface

static DcppHandlerRet StartObey(�
 DcppVoidPnt ClientData,
 StatusType * const status)
{
 return(ticker.Obey("TICK",status));
}

At � is the prototype for the StartObey() function. This function is defined later
and used as the “Success Handler” for the GetPath() operation ie., it is invoked
when the GetPath() operation succeeds and only when it succeeds. At � we see
the definition of a DcppTask object named ticker. This is specified with a name
of ``TICKER'' - the name the task is expected to have registered under if it is already
running. A location of 0, (the null pointer) indicates we expect the task to be on the
local machine and will load in on the local machine if it is to be loaded. The third
argument specifies the file from which the task is loaded if it is not already running.

At � we define a DcppHandler object. We don't specify any callback routines,
which means that any errors on of completion subsidiary actions will cause the action
to complete.

At � is the definition of the DpRun() function. This function is an Obey Handler,
which would be specified in a DitsActionsType variable passed to
DitsPutActions(). An obey message will result in this function being invoked.
At � we install the handler, which will result in the DcppHandler class
handling future reschedules of this action. We are a bit lazy in that we don't
DeInstall() this object at any stage. This is OK as a DeInstall() is only
required if we are to continue the action under our own control.

On the next line, we initiate a GetPath() operation on the ticker task object.
We specify StartObey() as the success handler. By not specifying an “Error
Handler”, the action will complete on error. Now a GetPath() operation which
returns with status ok will always result in a message transaction and it will therefore
return the value DcppReschedule. So unless an error occurs, so we immediately
request a reschedule. GetPath() automatically tries to load the task using the
information available to it if it cannot find the task.

� is the definition of the StartObey() handler. This will be invoked when the
GetPath() operation completes successfully. In it, we simply send the Obey
message. Note that this routine is invoked in the context of the action by a routine in
the DcppHandler class. StartObey() should return DcppReschedule if
anything it does requires the action to be rescheduled, which is also what Obey()

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 131

will return if it works, so we just return the value of Obey(). No success, trigger or
error handlers are specified which will result in the action completing when the
Obey's completion message arrives. The previous DcppHandler object remains
installed until the action exits.

By default, a DcppHandler object will keep track of one thread of messages. For
example, the GetPath() operation followed by the Obey() message. If you wish
to have multiple threads active at one time, for example, if you start a sequence of
GetPath() operations, each followed by an Obey(), you should indicate to the
DcppHandler object that there are multiple threads. For each thread after the first,
you should invoke the DcppHandler increment operator (either pre or post
increment). The DcppHandler object will then continue to reschedule the action
until all threads have returned DcppFinished.

A simple example of parameter monitoring.

This example shows how to use the Monitoring class. It sets up a monitor of the
parameter “PARAM1” in the task “TICKER'“, defined in the previous example.

Example 17.12 Dcpp and Parameter Monitoring
static void DpMon(const char * const name, �
 const SdsCodeType type,
 const DcppVoidPnt value,
 const DcppVoidPnt ClientData,
 StatusType * const status)
{
 MsgOut(status,"Parameter %s changed",name);
}

DcppMonitor Monitor(&ticker); �
DcppHandler Handler2; �

static void DpTest (StatusType *status) �
{
 Handler2.Install(status);

 Monitor.Monitor(DpMon,0,0, false,1,status,"PARAM1"); �
 DitsPutRequest(DITS_REQ_MESSAGE,status);
}

static void DpTestKick(StatusType *status) �
{
 Monitor.Cancel(status,DcppTask::DiscardResponse);
}

At � we have the definition of the routine that will be invoked automatically when
the parameter value has changed. In this example, it only outputs a simple message.
At � we have the definition of the monitor object. As its argument we have specified

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

132 17 C++ Interface

the address of a DcppTask object named ticker that would have been declared
previously. At � we define a DcppHandler object.

� is the definition of the action handler routine that will be invoked to do the work.
After installing the handler, we start the monitor at � specifying the routine
DpMon() to be invoked when the parameter changes and PARAM1 as the name of
the parameter to monitor. We assume at this point that some where a
GetPath() operation has already been performed on the DcppTask object named
ticker. That is all there is to it. The rest of the work is done within the
DcppMonitor and DcppHandler classes.

The one thing left to do is to cancel monitoring if necessary. In this example, a kick
handler is provided at �. All we need to is send a cancel to the monitor. By
specifying the DiscardResponse() routine as the success handler, we are saying
we want to ignore any response. The default kick routine rescheduling (no effect on
the Obey context) is sufficent.

A more complex example.

A more complex example and complete documentation for Dcpp and the other C++
DRAMA classes are found in document 12 - XXXX.

Efficiency Considerations.

It is reasonable to compare the efficiency of the C and C++ interfaces to DRAMA. A
this stage, this is largely done using internal knowledge of the code concerned.

The SdsId class adds one item (byte or word size, depending on the compiler and
target) to each SDS id is maintains. This is used to maintain the flags which indicate
if the item should be delete, freed-ed etc. An additional word is required for the
virtual function lookup pointer. Constructors must add a small amount of code to set
these items up, but otherwise, there is generally no overhead added to the run time
efficiency of the underlying Sds calls.

The Arg class adds no overhead over the SdsId overhead required for each SDS id.

The Sdp class adds no overhead over the C interfaces, since all Sdp class calls are
inlined to the equivalent C call.

The GitBool, GitEnum, GitInt and GitReal classes add at least one pointer to
each data item — used to find the virtual function lookup table. Other then this, they
are probably not any more inefficient then using the equivalent GitArg*()
functions directly. In the case of GitEnum, most of the work is in the declarations,

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 133

not in the resulting code. I believe the example code given RecType would use no
more runtime code then a direct call to the GitArgGetS() function and the
associated checks. You do through get much more compile time checking.

For Dcpp and assoaicated classes, a well-defined amount of overhead is added to the
initiation of each message being the allocation and filling in of a structure to maintain
details associated with a transaction. This structure is dynamically allocated. If this
proves a problem, then the default allocator could be replaced with a more
appropriate algorithm.

The overhead added to handle rescheduling is probably not much higher then that
normally required to sort through the possibilities in C code.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 135

18.Signals, Interrupts, Alternative Input Sources

Overview
In this chapter we examine the facilities provided by DRAMA which allow
communication between DRAMA and other sources of input a program may have.
The possible other sources of input are dependent on the operating system involved,
but there are normally two classes. The first is asynchronous interrupts, generated in
either software or hardware. Here we include Unix style “signals”. The second class
is notification of data availability from the file system.

But before we look at these facilities, we shall first examing the default handling of
Signals and associated operations.

Signals Etc. default handling
.Most operating systems have some way of asynchronously shutting down a program
either in response to some error or in response to a demand from the user, say a Ctrl-
C under Unix. In order to ensure that resources are released and other DRAMA
programs are told about a DRAMA task disappearing, DRAMA must be told about
such an event before the program disappears. The technqiues involved are system
specific and can have affects on other parts of a complex system, so I will describe
them.

VxWorks task deletion.

Under VxWorks, the key to DRAMA’s handling of this problem is the “task deletion
hook”. DRAMA installs such a hook the first time a DRAMA program starts up. And
then every DRAMA task which starts up registers with the hook. Each task removes
itself from the register when it is shutdown.

When a DRAMA task is forceably deleted, by the VxWorks function
taskDelete() or the shell command “td”, the hook is invoked in the context of
the task which triggered the deletion, not the context of task being deleted. The
deletion hook “makes itself” into the task being deleted and does the DRAMA cleanup
for that task.

Fortunately, there is no way to kill a task under VxWorks without deletion hooks
being invoked.

VMS Task Deletion

The VMS operating system provides good support for handling of a task dying. It
does this in two ways. First, almost all resources are correctly cleaned up when a task

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

136 18 Signals, Interrupts, Alternative Input Sources

dies. Secondly, an Exit handler can be supplied which will be executed in most cases.
Only if a task is expliclty “stopped” using the DCL “STOP” command or the XXX
system service is this exit handler not run. Even here, you could first it to be run by
“Installing” the program and even if you don’t the automatic cleaning up resources is
still done. See the SYS$DCLEXH() VMS system service for details.

WIN32 Task Deletion

Under the WIN32 (Windows NT and Windows 95/98) based operating systems, the
core of DRAMA resides in a DLL (Dynamic Link Library or Shared Library). A DLL
can be notified each time a program start’s up and shutdown. DRAMA makes use of
this notification to clean itself up. This approach will fail if the XXX WIN32 routine
is used to destroy a task since in that case the DLL is not notified. Since this routine is
the normal way to delete another program, it presents a problem. DRAMA own task
deletion routine — DitsDeleteTask() allows you to avoid this problem. When
called with the “FORCE” flag set false, DitsDeleteTask() will insert a new
thread into the target task. This new thread immediately deletes the target task using
XXX,WIN32 routine, which ensures the DLL is notified.

Unix Signals.

Unix presents real problems. Although you can specify an exit handler routine, using
atexit() or XXX, these are implemented within the C run time library only, not
by the system. As a result, they rely on the program calling exit() or returning
from main. If the program dies as a result of anything else, DRAMA would not be
notified. Unix signals are the normal way that a program is shutdown without calling
exit(). Signals can be generated internally to the task, say due to an address or
divide by zero error. The can also be generated externally using the kill() system
service.

DRAMA attempts to handle all Unix signals which may cause a program to exit.
When DitsAppInit() is invoked, DRAMA uses system calls to intercept each of
these signals, saving any existing signal handler for each signal. When a signal is
received, the DRAMA signal handler does two things. First, it tries to shutdown
DRAMA. Secondly, it tries to do whatever the original signal handler would have
done, core dump for example. Since one process can’t do both of these, it most fork in
the signal handler with the original process shutting down DRAMA.

Note that if you use “kill -9”, to kill a task, then the DRAMA exit handler is never
invoked. Always try a plain “kill” first. Due to problems resulting from “kill -9” and
sometimes from program crashes, a utility is needed to tidy up after DRAMA
programs in these cases. This is the “cleanup” command. This program has several
options, but in it’s default mode of operation, will kill any running DRAMA program

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 137

and tidy up resources allocated by those programs and any which had previously died
without cleaning up after themselves.

After calling DitsAppInit() you can override this for any particular signal using
the normal Unix signal features.

Turning off the default DRAMA handling.

As you have probably noticied, the above techniques are complex. You may find or
may suspect that they are interacting with similar techniques used by your program
or by libraries required by your program. If you wish, you may tell DRAMA not to
install its exit handlers. This is done by specifying the DITS_M_NOEXHAND flag to
DitsAppInit(). Having done this, you should try to ensure that DitsStop() is
invoked before the program shuts down.

Interactions with the Master Task.

If a task is loaded using the DRAMA task loading facilities, such as the DitsLoad()
routine, and the Master Task is used to do the load (which is the normal approach),
then if a task crashes without cleaning up after itself, the Master Task will tidy up on
its behalf. This provides one extra layer of protection against resources being left
around after a program has crashes. This occurs regardless of the setting of the
DITS_M_NOEXHAND flag, but requires that a program has been loaded using the
DRAMA facitilites.

DRAMA and Asynchronous Events.
Most complex real time systems will require interactions between the main message
loop of a program and asynchronous events. The type of asynchronous depends on
the operating systems, but includes Unix Signals, VMS ASTs, WIN 32 Threads and
asynchronous I/O and VxWorks Interrupt handlers. The way these style of
interactions is handled under DRAMA is that the author provides the routine which
responds to the event at a low level, such as an Interrupt ISR. From within this
routine, you can send a message to the DRAMA event loop, causing an action to be
rescheduled.

For the purpose of this discussion, we assume the worst case system, a VxWorks
Interrupt Service Routine (ISR). This is the worst case because of the common
address space used by the different tasks in a VxWorks system and because it is a real
ISR, which may crash the system. Having said this, the DRAMA code applies just as
well to the other operating systems supported.

The DRAMA Interrupt handling stuff assumes

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

138 18 Signals, Interrupts, Alternative Input Sources

1. A DRAMA action is used to trigger some physical event which later causes
an interrupt. The DRAMA action goes to sleep and is to be rescheduled
when the interrupt occurs.

2. The DRIVER which actually handles the interrupt can be told the address of

a routine to be invoked as an application specific ISR.

 There must also be some way of getting some "client data" item passed to the

ISR. This can just be via a global memory item but we normally use features
in our drivers which allow an argument to passed to the ISR.

3. The ISR routine handles time critical aspects and then "signals" DRAMA that

the interrupt has occurred indicating which DRAMA action is to be
rescheduled.

4. The DRAMA action is then rescheduled and handles the less time critical

apects.

5. In this scheme, the VxWorks driver for the hardware concerned knows

nothing about DRAMA. All it need do is provide the features mentioned in
2. We use normal VxWorks I/O calls to do the actual I/O.

Lets consider a dummy example, for which we write some pseudo code indicating the
DRAMA calls required. Lets assume the example involves moving a filter wheel and
there is an action to move the filter wheel named "MOVE_FILTER".

We assume low level VxWorks driver has been provided which provides the
following operations via a low level library.

 void FilterWheelCommenceMoveTo(int position);
 void FilterWheelInstallISR(void *routine,
 void *clientData);
 void FilterWheelClearInterrupt();
 int FilterWheelGetCurrentPos()

Remember here, DRAMA does NOT provide the above routines. The example
requires that the action MOVE_FILTER starts the filter wheel moving and then wait
for the interrupt which indicates the wheel is in position. The action then tidies up
after the interrupt and completes.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 139

Example 18.1 ISR Routines
/*
 * This routine implements the first stage of the action
 * MOVE_FILTER.
 */
void MoveFilterAction(StatusType *status) �
{
 int Where;
 if (*status != STATUS__OK) return;
/*
 * Get and validate the action argument which indicates the
 * required wheel position (routine provided somewhere else in
 * application)
 */
 RequiredPosition(&Where,status);

 if (*status == STATUS__OK)
 {
/*
 * Clear any outstanding interrupts and Install ISR
 *
 * Note the use of DitsGetTaskID() as the client data
 * item. This is needed by the ISR.
 */
 FilterWheelClearInterrupt(); �
 FilterWheelInstallISR(MyISRRoutine, DitsGetTaskID());
/*
 * Start the move operation.
 */
 FilterWheelCommenceMoveTo(Where);
 }
/*
 * Wait for the filter wheel move to complete. Function
 * "FilterMoved" will then be invoked as the next stage
 * of the action. Note, you can also set up a timeout here, say
 * by calling DitsPutDelete() or GitPutDelay().
 */
 DitsPutObeyHandler(FilterMoved,status); �
 DitsPutRequest(DITS_REQ_SLEEP,status);
}

/*
 * ISR routine installed by the above action routine. Invoked
 * in interrupt context by the DEVICE DRIVER.
 */
void MyISRRoutine(void *ClientData) �
{
 DitsTaskIdType SavedID;
 StatusType status = STATUS__OK;

/*
 * Do any work required by the driver.
 */
 FilterWheelClearInterrupt() �

/*

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

140 18 Signals, Interrupts, Alternative Input Sources

 * Enable DRAMA task context. This is required before
 * calling DitsSignalByName().
 */
 DitsEnableTask((DitsTaskIdType)ClientData, &SavedID); �

/*
 * Call DitsSignalByName(). This actually sends a message
 * to the task causing the action to be rescheduled.
 *
 * The first argument is the name of the action to be signalled.
 *
 * The second is an SDS id, which can be fetched in the action
 * routine by DitsGetArgument(), but in this case, we CHEAT
 * by passing the integer value returned by the function. This
 * is ok as long as the action code invokes DitsArgNoDel().
 * See FilterMoved() implementation.
 *
 * Note that you cannot create or modify the structure of SDS
 * items in an ISR, although you can use SdsPut/SdsGet.
 */
 DitsSignalByName("MOVE_FILTER", �
 (SdsIdType)FilterWheelGetCurrentPos(),
 &status);

/*
 * DitsSignalByName will fail if the action is not active
 * (waiting to be rescheduled) returning the status code
 * DITS__ACTNOTACT.
 *
 * It will also fail if the action name is invalid, returning
 * DITS__UNKNACT.
 *
 * IMP level failures are also possible but less likely.
 *
 * About the only place you can report such failures is to the
 * VxWorks console, using the VxWorks routine logMsg.
 */
 if (status != STATUS__OK)
 {
 logMsg(
 "MyISRRoutine:DitsSignalByName failed,status= %x\n",
 status, 0, 0, 0, 0, 0);
 }
/*
 * Restore the task context.
 */
 DitsRestoreTask(SavedID); �
}

/*
 * Second stage of action MOVE_FILTER. Invoked after interrupt
 * occurs.
 */
void FilterMoved(StatusType *status); �
{
 int where;

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 141

 if (*status != STATUS__OK) return;

 if (DitsGetEntReason() == DITS_REA_ASTINT)
 {
/*
 * The ISR passed the new position to us as an integer
 * argumentto DitsSignalByName(). We can fetch this
 * using DitsGetArgument().
 *
 * DITS expects arguments to DitsSignalByName() to be
 * SDS items and will delete these SDS items when this
 * action entry returns. Since in this example it is not
 * an SDS item, we must tell DITS not to try to delete or
 * free it by calling DitsArgNoDel().
 */
 where = (int) DitsGetArgument(); �
 DitsArgNoDel(status);

 ...
 }
 else
 {
/*
 * Should not happen in this example
 * But if we have enabled a timeout for example
 */
 ;
 }
}

At � we have the action handler routine for the MOVE_FILTER action. In this
example, it first grabs and validates the desired filter wheel position in the routine
RequiredPosition(). This is assumed to be implemented somewhere else in the
application, probably by calling GIT library routines.

At �, we use the driver provided routines to clear the interrupt, (which many real
world examples require) and to install our ISR routine. The ISR routine is
MyISRRoutine(). The second argument to FilterWhellInstallISR() is a
“ClientData” item to be passed as an argument to the ISR routine. In this example, we
need to pass the value of DitsGetTaskID(). DitsGetTaskID() returns a value
which is needed in the ISR routine to enable the use of DRAMA calls.

At �, we reschedule the action to await the interrupt.

At �, we have the definition of the actual ISR routine. Note the “ClientData”
argument which is used to pass the value of DitsGetTaskID(). When writing
such a routine you are heavly restricted in what you can do. Under VxWorks, the
task context may be of any task in the system. As a result, you can't just use DRAMA
routines since they rely on the task context to access global data items.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

142 18 Signals, Interrupts, Alternative Input Sources

In many ISRs, there will be some work which must be done to clear the interrupt. In
this example, we call FilterWheelClearInterrupt() at �.

After this, we need to send a message to our DRAMA task. Before we can do that, we
need to set up the task context such that DRAMA routines can be used. This is done
at � using DitsEnableTask(), which takes as its first argument the value
returned by DitsGetTaskID() found in “ClientData”. You must supply the
address of a variable, in this case SavedID, where the current task context is saved.

Now you can send the message to your DRAMA task. This is done at � by calling
DitsSignalByName(). You specify the name of the action to signal and an
argument for the action. You can supply an SDS id which becomes the values
returned by DitsGetArgument() when the action is scheduled. In this case, we
cheat by use specifing an integer value here. This is safe as long as the action uses
DitsArgNoDel() when it is reschedule. If you do specify an SDS id, you must not
delete the SDS item or free the id as this is normally done by the action reschedule
code.

After sending the message, we must restore the task context to what it was on entry
to the ISR. This is done at � by DitsRestoreTask().

Finially, we have the second stage of the MOVE_FILTER action at �. When an
action reschedule is triggered by DitsSignalByName(), the reason will be
DITS_REA_ASTINT.

At �, the argument supplied to DitsSignalByName() is accessed. In this,
example, we were just passing an integer value, rather then an SDS id, so we call
DitsArgNoDel() to ensure DRAMA does not try to delete an SDS item with the
same integer ID value as the item we are passing.

That's it. One note about the the DITS signalling routines. There
are two real routines DitsSignalByName() and DitsSignalByIndex(). The
former takes an action name and the later an action index. The index of an action can
be fetched using DitsGetActIndex(). Using the index is faster but means there is
another item you have to pass to the ISR. In addition, using the index allows
spawnable actions to be signalled.

In addition, older code uses DitsSignal(). This is just a different name for
DitsSignalByName().

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 143

As mentioned above, the example is a VxWorks based example,the most restrictive
case. In operating systems where the asynchronous events occur in the same memory
context as the main line code, the use of DitsEnableTask() and
DitsRestoreTask() are not necessary, although they do no harm.

Alternative Input sources.
INCOMPLTE

Example 18.1 Alternative InputSources
/* List the item "fieldData" within the specified SDS file */
}

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 145

19 Determining DRAMA Buffer Sizes

Overview

This chapter attempts to answer one of the most complicated questions in DRAMA,
how to set DRAMA message buffer sizes. First, we will have a look why this scheme
is used. We will then look at the scheme itself and then how to select your buffer
sizes. We also look at the error messages and other details related to buffer sizes.
This chapter is surprisingly large. This is because it attempts to give all the gory
details, and is complete with diagrams and examples. Hopefully, your need only
familiarise yourself with what is here and only need read the full details if you hit
problems.

Please note that the shaded parts of this chapter represent things which I intend to
change by changing DRAMA.

Message Sending Techniques

There are many different techniques you might use to send a message from one task
to another. Factors involved in the selection of the technique to be used include

• The facilities provided by the computer OS.
• The locations of the tasks involved, i.e. on the same or different computers.
• The speed required.
• The sizes of the messages to be sent.
• The number of messages to be sent.
• The expected reliability of the underlying message transport mechanism.

Having said this, all the possibilities divide into two broad classes, these are
“Rendezvous” based techniques and all the rest. Rendezvous based techniques rely on
both tasks involved meeting at a pre-defined point. Only when both tasks are at the
right point can message passing occur. The major benefits of this technique are
reliability and cheap memory management.

For example, consider two tasks A and B. If task A wants to send a message to task B,
task A must call a message sending routine. For task B to receive the message, it must
call a message receiving routine. The particular protocol determines what happens if
say A tries to send when B is not waiting for the message, but in many cases, A would

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

146 19 Determining DRAMA Buffer Sizes

just block until B is ready to receive the message. If something goes wrong in the
message transfer, both tasks can immediately and reliably receive an exception.
Memory management is normally easy, the receiver knows how much data it is to
receive and can allocate memory for it as part of accepting the message.

Rendezvous based techniques could well be the only techniques you would consider
in situations where reliability is ultra important, such as where a failure would cause
loss of life. It is probably for this reason it is the only technique available in ADA’s
tasking system.

But there is more to computing then nuclear power stations and fly by wire planes.
The major problem with the rendezvous techniques is that the sending task has to
wait for the receiving task to accept the message. If something goes wrong, or the
receiving task is just busy, the sending task blocks. This often creates a poorly
responding system which annoys the user. So non-rendezvous techniques allow the
sender to send the message then continue working. The receiver reads the message
when it ready.

What do we lose with this approach - cheap and highly reliable error handling. If the
receiver cannot process the message, another message needs to be sent to the sender
to tell it of this. But for systems which must be responsive to multiple external
events, this is by far the better approach. Note that rendezvous based systems can
use threads or similar techniques to get around the problem, but they then have
trouble with access to variables which must be used by both threads.

So DRAMA chose the non-rendezvous approach. In most such schemes, the sender
writes the message to a buffer and then notifies the receiver that there is a message
waiting. The sender then continues with its job, possibly involving sending more
messages to the same task. The receiver just reads the messages from the buffer and
then marks the buffer as empty, allowing the sender to reuse the buffer.

DRAMA’s Message Sending Technique
The particular technique used by DRAMA is the use of shared memory message
buffers combined with a notification technique. Using shared memory allows a task
to write a message directly to the receiving task’s message buffers. In addition,
DRAMA provides networking tasks which emulate the base facility when the tasks
are on different machines.

The notification technique used is system and usage dependent, allowing DRAMA to
choose the fastest technique which will do that job and to remain compatible with
other systems with which DRAMA must work. For example, on Unix systems, we

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 147

use Semaphores or Message Queues or FIFO’s. FIFO’s are used on a task specific basis
if compatibility with X-Windows is required (i.e. the notification technique must
work with the select() system call). Otherwise, the fastest technique of either
Semaphores or Message Queues is used.

The actual implementation of shared memory also depends on the operating system.
Under Unix, mapped files are the default technique with the files being located in the
directory indicated the environment variable IMP_SCRATCH (defaulting to the
user's home directory. It is good idea if this points to a disk on a local machine, not an
NFS disk). Under VMS, VMS global sections are used. Under VxWorks, it is simple
malloc() allocated memory (as all memory is global under VxWorks). Under
WIN32, it is Mapped files located in the system virtual memory file directory.

The primary aim of this chapter is to examine the message buffer usage.

The Global Buffer Space
In the current version of DRAMA, all message buffers allocated within a task are
allocated from the "Global Buffer Space". This is an area of shared memory created
when the program calls DitsAppInit()/DitsInit(). This means you must have
some prior knowledge about which programs will be communicating with your tasks
and how much buffer space they will try to allocate. This is considered a flaw in the
DRAMA implementation. A future version may remove the "Global Buffer Space"
and allocate shared memory dynamically each time a path is allocated.

The Message Buffers
Figure 19.1 shows two tasks, A and B and the shared memory they have pre-allocated
for use as message buffers. The amount of this pre-allocated memory is determined
by the “Global Buffer Space” space argument to DitsInit() or DitsAppInit().

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

148 19 Determining DRAMA Buffer Sizes

Figure 19.1 The Shared Memory Buffers

Now in order for task A to send a message to task B, task A must allocate some space
in task B’ shared memory space for those messages. Now task A only allocates what it
needs, allowing other tasks to also talk to task B. Figure 19.2 shows this.

Figure 19.2 Allocation of space in task B by task A

Now whilst this allows task A to send messages to task B, it does not allow task B to
respond. For task B to respond, it must have some space to write messages to task A.
Figure 19.3 shows this.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 149

Figure 19.3 Allocation of space in task A by task B.

In this example, task B has allocated more space in A then task A has allocated in B.
This buffer allocation is done by DitsPathGet(), which hides that details. We
will be examining the buffer sizing later.

Sending Messages.
Having set up buffers for communication between two tasks using DitsGetPath(),
we can send messages along the path. Most DRAMA messages involve a two-way
flow of information. For example, in the sending of an Obey message, task A sends a
message to task B, which will at some later time, send one or more relies. From the
point of view of the message buffers, what happens when task A calls DitsObey()
is that the message is written into the buffers in task B. This is shown by Figure 19.6.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

150 19 Determining DRAMA Buffer Sizes

Figure 19.4 Sending a message from task A to task B.

If the message buffer is initially empty, the message sent can be any size up to the full
size of the message buffer. Any space remaining in the buffer can be used to send
additional messages whilst waiting for task B to process the first message. When task
B reads the message, it does the initial processing of the message (the first stage of the
action) and then releases the buffer space allowing it to be used again. Note that task
B reads directly from the message buffer and any SDS argument to the Obey is
accessed directly from the message buffer. This is the reason you must copy SDS
argument structures if you want to keep them about after the action stage completes.

Task B will normally want to send one or more response messages back to task B.
These responses may be MsgOut(), ERS or DitsTrigger() messages, as well as
action completion responses. This is shown by figure 19.7.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 151

Figure 19.5 Sending replies back to task B.

Once again, only the required space is used and the remaining space can be used to
send other messages. An important thing to note is that communication between
task A and B can only be done through the pre-allocated buffers set up between those
tasks. If the buffer in question is full, they cannot use the remaining space in the
shared memory. That is reserved for other tasks to allocate.

Figure 19.8 shows the allocation of buffers when a third task, task C, is also trying to
communicate with task B. The scheme works exactly the same, but task C can only
allocate from the space remaining in task B’s global buffer space.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

152 19 Determining DRAMA Buffer Sizes

Figure 19.6 Allocation by task C in task B.

You can see that in this example, very little space is available in task B for a third task
to commence communications with it.

Networking
When networking is involved, the protocol becomes more complicated, although this
is largely hidden from the DRAMA Application programmer. In this case, the
DRAMA networking tasks “transmitter” and “receiver” are involved. If task A and B
are on different machines, then task A will actually allocate buffer space in the
“transmitter” task on its machine and it is the “receiver” task on task B’s machine
which allocates the space in task B.

Figure 19.9 shows what happens when task A and B are on different machines. You
will note that the two transmitter tasks have their own global buffer space which
allocated by the other tasks. When task A calls DitsObey() to send a message to
task B, it actually sends the message to the local “transmitter” task. Transmitter
transparently forwards the message to the remote “receiver” task that in turn is
responsible for passing it to task “B”.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 153

This scheme was chosen to avoid every DRAMA task having to have the overheads
involved in networking communication. It also means that a send to a local task or a
remote task appear identical to the sending and receiving tasks, other then the
network delays involved.

Figure 19.7 Tasks A and B on different machines

Buffer Sizes.
One of the hardest jobs in DRAMA is selecting the correct buffer sizes. Part of the
problem is determining what values are to be set.

First there is the global buffer space in each task, this is the amount of shared memory
allocated from the system, and from which the message buffers for a particular task
will be allocated. For user tasks, this value is set by the “bytes” argument to
DitsAppInit()/DitsInit(). A good initial value for this is item 20000. If your
task is very busy, has multiple paths to other tasks or receives large messages, such as
images, it may need to be much higher. Note that not all of this space is available
for your message buffers. You should assume about 4000 Bytes is used by the system.

If you are sending large amounts of data across the network, you may need to increase
the global buffer space allocated by the “transmitter” task involved. By default, each
transmitter task allocates 1Mb of global buffer space. You can change this value by
setting the system symbol (Environment Variable/Logical Name, depending on the
OS) named IMP_NET_KBYTES to the number of Kilo-Bytes you wish transmitter to
allocate. This should be done before you start the DRAMA networking on the
machine where you want to change the allocation. For example, to up the value to
2Mb -

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

154 19 Determining DRAMA Buffer Sizes

setenv IMP_NET_KBYTES 2048
dits_netstart

For each path between two tasks, the amount of space allocated for that path is
determined by the info structure argument to DitsPathGet(). This structure has four
elements of interest, MessageBytes, MaxMessages, ReplyBytes and
MaxReplies. Consider the example in figure 19.3, which was set up by task A
calling DitsPathGet(). The space allocated by task A in task B, in bytes, is given by

(info.MessageBytes + IMP_MSG_HEADER_SIZE) * info.MaxMessages

The value of IMP_MSG_HEADER_SIZE depends on the architecture and the revision
of IMP. It provides sufficient space for the message header added by the underlying
IMP message system. The variable nature of this item is why you need two numbers
to define the buffer size, rather then just the total space. In the current version of
IMP, IMP_MSG_HEADER_SIZE is roughly 32 Bytes. The idea is that you determine
the size of the largest message you may want to send as well as the maximum number
of them which may be waiting to be processed at any time. Having done that, the
IMP layer can account for the size of it’s own header in each message.

An important point here is these variables (MessageBytes and MaxMessages) are
only used for this calculation. Once the total space to be allocated is determined,
only that total is used anywhere in the system. So, you can send messages of any size
up to the total and you can have a larger number of smaller messages waiting for
processing.

Considering figure 19.3 again, the space allocated by task B, in task A buffers, for
reply messages is given by

(info.ReplyBytes + IMP_MSG_HEADER_SIZE) * info.MaxReplies

and all the other considerations mentioned above apply, except that there is a
minimum value and some overhead which are applied automatically by the IMP
layer. The minimum value is about 350 bytes, and the overhead is up to that value,
depending a bit on the actual size.

There are two things about DitsPathGet() you should be aware of at this stage.
First, only the first DitsPathGet() call for a path between two tasks is significant.
It is at that stage that the buffers are allocated. As a result, if you make a later call to
DitsPathGet() with different buffer sizes, they will be ignored. The only way to
change the buffer sizes dynamically is to close the path using DitsLosePath() and
then open it again. But beware of timing problems (losing a path whilst waiting for a

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 155

reply on that path). The timing problems are why this facility is not provided
automatically by DitsPathGet().

The second thing to beware of is that paths are inherently two-way. If after task A
has got a path to task B, task B attempts to get a path to task A, that path will already
exist and the buffer sizes have already been allocated.

If a task wishes to send messages to itself, the buffer sizes are set by the call to
DitsAppInit(). See the man/html page for details. This is because DRAMA uses
such a path itself and allocates it at that time. There is a default size of 2000 bytes for
the self-path.

Sizes of Messages
So clearly one of the things you need to determine are the sizes of the messages your
task will send. DRAMA has two classes of messages, GSOK messages and TAP
messages. GSOK is an abbreviation for Get/Set/Obey/Kick, representing the four
original named message types the user could send. Three other types have been
added over time, the Monitor, Control and MGet (Multiple Parameter Get) messages.
These messages are all sent using the DitsInitiateMessage() routine, although
several have higher level wrap arounds, such as DitsObey().

TAP messages are used for the replies to GSOK messages. They are sent by the
MsgOut() and DitsTrigger() routines, the ERS package and as the action
completion message. You never send one of these messages directly, but instead via
these facilities.

Normally a message of either of these two classes consists of a header and a user
supplied argument. The user-supplied argument is an SDS structure. So to determine
the size of a message, you need to know the size of the header and the size of the
argument structure. To help, DRAMA provides the DitsGetMsgLength()
routine. This routine takes, as its first argument, a flag indicating which class of
message you want the size of. The flag is set false for GSOK messages and true for
TAP (reply) messages. Since the header of each class of message has the same size in
all messages of that class, you don't need to indicate the type of message within each
class.

The second argument to DitsGetMsgLength() is the SDS id of an argument to be
sent with the message. Note that all the data elements in this structure should be
defined, if they are to be defined when the message is sent. (See the SDS manual for

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

156 19 Determining DRAMA Buffer Sizes

details about "defining" data items, but basically this means you should have put data
into the structure, not just have created it).

The third argument to this routine is the address of a variable to hold the number of
bytes that will be required to send the message. The fourth argument is the normal
modified status argument.

How do you use this routine? One approach is, when building an application, to add
a temporary call to this routine with the largest structure that you intend to send.
Then print out somewhere the result. This allows you to size the message buffers
correctly. If you only have to consider messages without SDS argument structures,
then the sizes are always the same for each class. For GSOK messages in the current
version of DRAMA (1.2), this value is 304 bytes. For TAP messages, this is 256 bytes.

DitsGetMsgLength() is useful for any message to be sent with DitsObey(),
DitsKick(), DitsSetParam(), DitsGetParam(),
DitsInitiateMessage(), DitsTrigger() and for arguments to be returned
using DitsPutArgument(). (Note that higher level routines in DUI, DUL and GIT
provide wraparounds of some of these for various cases) This leaves messages to be
sent with MsgOut(), ERS and parameters being monitored.

Messages sent using MsgOut() have a fixed length, which in the current version of
DRAMA (1.2) is 580 bytes. For parameters which are to be monitored by other tasks,
you can run DitsGetMsgLength() on a parameter by using SdpGetSds() to
access the SDS id of the parameter. The parameter values are sent in TAP (reply)
messages.

ERS messages are the hardest ones to sort out. This is because error reporting occurs
when things go wrong and sometimes things can go badly wrong, with different
levels of the system reporting multiple error messages and recursion occurring. A
single ERS message can have up to 30 error lines, each of 200 characters. A single
message is sent when a call to ErsFlush()/ErsOut() is made and may also be
sent when an action stage returns. In some cases, if an application is trying to recover
from an error, it may send multiple ERS messages. In the current version of DRAMA
(1.2) an ERS message with a one-line report requires 660 bytes. A full 30 line report
takes 6692 bytes. This works out at 208 bytes for each extra line. So if you want to
catch a full ERS report, you will want a reply buffer of about 7000 bytes. I often use
8000 bytes.

Buffer Sizes in Practice

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 157

So how does one actually work out buffer sizes in practice. Often, you make a stab
and experiment. For a simple path where you are sending a GSOK message and
expecting replies, I normally assume 1000 bytes is plenty to send the message and I
am unlikely to be sending more then one message. So, MessageBytes is set to 1000
and MaxMessages to 1. This amount of space and some overhead will be allocated
from the global buffer space of the target task. For replies, my first stab is to allow
sufficient space for ERS messages, which is normally plenty for the other messages.
This space will be allocated from the global buffer space of the task calling
DitsPathGet().

If you are sending large argument structures, say images, you may have to use
DitsGetMsgLength() to determine the size of the buffer you need. Remember to
consider both directions.

The next thing to consider is if there are likely to be bursts of messages which a task
cannot process quickly enough. In this case, you have to increase the MaxMessages or
MaxReplies arguments appropriately. This is often done by experimentation with
some extra added just to be sure. Things to consider here are networking speeds (the
network may make a task look slow, causing the IMP transmitter task's buffer to fill
up) and the time it takes for user interfaces to format messages. The later is often a
problem with bursts of error or logging messages - with user interfaces often having
trouble outputting the messages as quickly as they come in.

If you are quite restricted in the amount of memory available, then you may want to
use the above information to set the buffers sizes more precisely. You can make use
of the DitsGetPathSize() routine to obtain the actual buffer sizes for a given
path. If needed, the routine DitsGetParentPath() allows an action to get the
path to the parent task, for use with DitsGetPathSize().

To determine the global buffer space allocation, add up all the buffers that are to be
allocated to that task and then add the overhead of 4000 Bytes. This overhead is used
for the "self path" (default of 2000 bytes) and storing assorted information which must
be accessed by other tasks. If often use 20000 as a starting point. This ensures there is
sufficient space for multiple connections to the task, often useful when debugging.

Example calculation of buffer sizes.

As an example, let us consider my TICKER/TOCKER tasks. These tasks are used
when testing DRAMA. TICKER is started first. TOCKER is then started and gets a
path to TICKER. It then sends an Obey message to TICKER and waits for the
response. It repeats this obey message a given number of times, although always
waiting for the previous message to complete.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

158 19 Determining DRAMA Buffer Sizes

First consider the TICKER task, a simple task. It only needs space for one buffer from
the TOCKER task, which will be used to send a single Obey message. Since this Obey
message has no arguments, only 304 bytes is needed. I will choose 400 Bytes as the
value for MessageBytes and one as the value for MaxMessages. Assuming only one
task is going to talk to TICKER, this means TICKER has a global buffer space
requirement of 400 bytes plus the overhead mentioned above (4000 bytes).

For messages from TICKER back to TOCKER, it is sufficient to allow space for the
maximum ERS message. This gives a ReplyBytes value of 8000 and a MaxReplies
value of 1. The TOCKER global buffer space requirement is therefore 12000 bytes.

Buffer space allocation problems.
Now the above scheme generally works well, avoiding any delay in the sending tasks
whilst waiting for the receiving tasks to read messages. But there are three problems
you can hit, and when you hit them, it is often hard to work out what exactly has
gone wrong. The problems are

1. There may be insufficient space available in the global buffer space when you try

to allocate space using DitsGetPath().
2. There may be insufficient space available in a buffer for you to ever send a

particular message.
3. There may be a temporary lack of space due to the target task being slower then

the sending task.

Each problem may occur in a number of cases. For example, problem 1 may occur
due to task B running out of global buffer space, or task A running out of global buffer
space or if the tasks are on remote networks, if either of the transmitter tasks
involved run out of global buffer space.

Unfortunately, some errors are known about immediately by the task which
requested the operation whilst others require an error message to be sent back to that
task by another task in the system. Because of this, DRAMA is not yet consistent in
handling these errors. Error codes tend to differ for what is basically the same error
and there are a couple of mistakes in the messages you get. We hope to fix this over
time. The messages shown below are valid as of DRAMA version 1.2, but may change
(to provide better information and more consistency) in the next few versions of
DRAMA.

We now examine each case and the error messages you may receive. In each case, the
target task (equivalent of task B in figure 19.3) is named TICKER . The initiating task

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 159

(equivalent of A) is the DTCL user interface. Many of the error reports contain a
number of lines, generally output by the ERS package. But normally there is one
occurrence of an error code, such as DITS-F-NOSPACE, representing status code
DITS__NOSPACE. This is the value the status variable will be set to, as formatted by
the DTCL user interface's default error handler. In these examples. the ERS error
reports are output but remember you can intercept these using the features provided
by the ERS package, such as ErsPush() and ErsPop().

Running out of Global Buffer Space
Please note that all the examples here are generated by calls to DitsPathGet() (or
routines which are wrap arounds of DitsPathGet()). A failure in
DitsPathGet() means you can’t send a message to the task. If you have already
been sending messages to a task - ie. you have a valid path, you should look at the
next section.

If a local task you are trying to connect to (eg. task B in figure 19.3) has insufficient
space for your path, you will receive the following error sequence

##DTCL: Not enough space for new ring buffer of 50000 bytes
DTCL:Task "TICKER" does not have sufficient global buffer space
left for our connection
DTCL:Failed to find path to task "TICKER".
DTCL:obey:%IMP-E-NO_SPACE, Insufficient space left in buffer

Notice the clear mention of “global buffer space”. Also note the mention of "ring
buffer". This is the type of IMP buffer being allocated. The "ring buffer" message is
generated internally by IMP where as the other messages were generated by DITS.

Things are a bit different when the target task is on a remote machine. The problem
is that the local task does not have sufficient information to give as clean an error
message. The message you get is

##DTCL:Failed to find task "TICKER@AAOSSI"- %IMP-E-NO_SPACE,
Insufficient
space left in buffer.

But, on the remote machine, if the standard output of the “Receiver” task on the
target task’s machine is directed somewhere you can see it, you will also see the
following appear at the same time.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

160 19 Determining DRAMA Buffer Sizes

IMP_Receiver: Not enough space for new ring buffer of 30032 bytes

In both the above examples, it is the “bytes” argument to the call to
DitsAppInit() in Task B which must be modified.

The third possibility, also in the remote task B case, is that is the transmitter task on
the machine on which task A is running which is lacking space. This is very similar
to the first case. The error message will be something like this

##DTCL: Not enough space for new ring buffer of 20032 bytes
DTCL:Task "ImpTransmitter" does not have sufficient global buffer
space left for our connection to task "TICKER"
DTCL:Failed to find task "TICKER@AAOSSI"- %IMP-E-NO_SPACE,
Insufficient
 space left in buffer.

You can again see the clear mention of “global buffer space” but there is a clear
indication that it is the transmitter task, known as “ImpTransmitter” which has the
problem. Here, to solve the problem, you must set the environment variable
IMP_NET_KBYTES on the machine on which task A is running. You must do this
before starting the networking, ie, before invoking dits_netstart.

Alternatively, the target task (Task B in figure 19.3) may have sufficient space, but the
originating task (Task A in figure 19.3) may not have sufficient space for the reply
buffers. In this case, there is a simple error message reported back to the originating
task and some more information is printed to stderr by the target task. The report
back to task A will be like this

#DTCL:Failed to find task "TICKER"- %DITS-F-CON_REJECTED,
Connection
by rejected by target task.

Unfortunately, this is not telling you much, as the originating task does not know
anything more then that the connection was rejected ¾ the DIT__CON_REJECTED
error code could also be generated in other cases, such as the target task explicitly
rejecting the connection (see DitsPutConnectHandler()). So you really need
the stderr report from the target task. This looks something like this

##TICKER: Not enough space for new ring buffer of 83200 bytes
TICKER:Failed to accept connection from task "DTCL",
%IMP-E-NO_SPACE, Insufficient space left in buffer
TICKER:Task "DTCL" does not have sufficient global buffer space
left
 for our connection

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 161

Note that is was the target task, task TICKER, which reported the message. Again,
“global buffer space” is mentioned in the error message.

As per the previous case, there are the two networking cases. First, when the target
task is on a remote machine (again it is the originating task which does not have the
space). The following message is returned by the originating task.

##DTCL:Failed to find task "TICKER@AAOSSI"-
%IMP-E-NO_LOCAL_SPACE, No space in originating task.

Here it is quite clear where the failure is, but no further information is available. But,
if you have access to the stderr device of the “receiver” task on the originating
task’s machine, you will see something like this.

IMP_Receiver: Not enough space for new ring buffer of 16640 bytes

The combination of the two messages is normally enough to work out what is
happening. In both the above cases, it is the bytes argument to DitsAppInit() in
Task B which must be modified.

This leaves one more case to consider, where the task that has insufficient space is the
transmitter task on the remote machine. This is probably the most confusing case as
it is the target task which has the information. The originating task will receive the
following error.

##DTCL:Failed to find task "TICKER@AAOSSI"-
%DITS-F-CON_REJECTED, Connection by rejected by target task.

But if you have access to stderr for the target task, it will give a report like this

##TICKER: Not enough space for new ring buffer of 8320 bytes
TICKER:Failed to accept connection from task "DTCL", %IMP-E-
NO_SPACE, Insufficient space left in buffer
TICKER:Task "DTCL" does not have sufficient global buffer space
left for our
 connection

This message has a clear flaw. Whilst is mentions “global buffer space”, it incorrectly
says the buffer in question is in DTCL. In fact, it is in the local transmitter task.
DRAMA has no way at present from determining where the task is. We hope to fix
this in a later release. In this case, to solve the problem, you must set the
environment variable IMP_NET_KBYTES on the machine on which task B is
running. You must do this before starting the networking, i.e., before invoking
“dits_netstart”.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

162 19 Determining DRAMA Buffer Sizes

Messages which won’t fit in a buffer.
Here, it is assumed that DitsPathGet() has succeeded and you have a valid path.
We wish to consider the error messages you will receive if you attempt to send a
message which won’t fit in a buffer, even when it is empty. This error is always
known about immediately by the sending task. There are two cases, the case where a
task is initiating a message transaction (say by calling DitsObey()) and the case
where a reply is involved (MsgOut(), ERS messages, DitsTrigger() messages
and action completion messages.)

In the first case, you will receive an error message at the initiating task something like
this

##DTCL:764 byte message (and 32 byte header) cannot fit in 432 byte
buffer
DTCL:Message won't fit in receiver's (TICKER) buffer, length is
746.
DTCL:Failed to start Action "TICK" to "TICKER" task -
%DITS-F-NOSPACE, There is not sufficient space in the message
receiver for
this message.

The DITS__NOSPACE message is the significant code. You can see full details about
an attempt to send a 764 byte message, a 32 byte header to a buffer which is only 432
bytes long.

Reply messages become a touch harder since there are some cases where you really
want something to get through and other cases where the target task should just
return a bad status. The most important case is action completion. Here, if the action
completion message does not get through in some form, many systems will hang.
What DRAMA does is to ensure there is always space in a reply buffer for a reply
message stripped of any argument (set up using DitsPutArgument()). If it then
can’t fit the full message, it can send a message without it’s argument and with a bad
status value. In this case, the task which sent the original obey will get an error
message like this

##DTCL:Action "TICK" to task "TICKER", completed with status =
%DITS-F-COMPSENDERR, Error sending completion message, sent without
the
 argument.

If the message in question is a DitsTrigger() message, then the normal error
reporting scheme can be used. For example, we will get something like the following
error at the originating task.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 163

##DTCL:TICKER:1216 byte message (and 32 byte header) cannot fit in
1200 byte
 buffer
DTCL:TICKER:Error sending reply (tap) message of size 1216 to
task DTCL - %IMP-E-CANT_FIT, Message is too large for this
connection
##DTCL:Action "TICK" to task "TICKER", completed with status =
%IMP-E-CANT_FIT, Message is too large for this connection.

MsgOut() will produce a similar report, although this it is rarely seen as most reply
buffers are sufficiently long for a MsgOut() message.

If the message which can’t fit through is an ERS message, then there is little DRAMA
can do but dump most of the information to stderr in the target task of the original
message (task B in this case.) There are two ERS cases. First, if the failure occurred
whilst the target task was calling ErsFlush(). In this case, the ErsFlush()
status argument will be set to “ IMP__CANT_FIT", Message is too large for this
connection” and this value is often returned to the originating task. In the second
case, where the flushing of error messages is occurring as part of an action stage
completion, status will not normally be set bad. In both cases, the stderr device of
the target task (Task B) will receive a dump of the original error as well as details
about the ERS failure. For example,

!!Error Report While Flushing:2092 byte message (and 32 byte
header) cannot
 fit in 432 byte buffer
!!Error Report While Flushing:Error sending reply (tap) message of
size 2092
to task DTCL - %IMP-E-CANT_FIT, Message is too large for this
connection
TICKER\Dits___ErrOut: error outputting message
##TICKER:Error message 1, the quick brown fox jumps over the lazy
dog
TICKER:Error message 2, the quick brown fox jumps over the lazy
dog
TICKER:Error message 3, the quick brown fox jumps over the lazy
dog
TICKER:Error message 4, the quick brown fox jumps over the lazy
dog
TICKER:Error message 5, the quick brown fox jumps over the lazy
dog
TICKER:Error message 6, the quick brown fox jumps over the lazy
dog
TICKER:Error message 7, the quick brown fox jumps over the lazy
dog
TICKER:Error message 8, the quick brown fox jumps over the lazy
dog
TICKER:Error message 9, the quick brown fox jumps over the lazy
dog

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

164 19 Determining DRAMA Buffer Sizes

ErsFlush:Message output error f358152
!!Error message 1, the quick brown fox jumps over the lazy dog
!!Error message 2, the quick brown fox jumps over the lazy dog
!!Error message 3, the quick brown fox jumps over the lazy dog
!!Error message 4, the quick brown fox jumps over the lazy dog
!!Error message 5, the quick brown fox jumps over the lazy dog
!!Error message 6, the quick brown fox jumps over the lazy dog
!!Error message 7, the quick brown fox jumps over the lazy dog
!!Error message 8, the quick brown fox jumps over the lazy dog
!!Error message 9, the quick brown fox jumps over the lazy dog

The double output of the message above is a bit annoying any may be removed at
some stage. But you can see the details of the failure are output is the original
message.

Buffer full errors
We now examine another class of errors. This is where DitsPathGet() has
succeeded and the message will fit in the buffer if it were empty, but the buffer is not
empty and as a result, a message won’t fit. This type of problem normally occurs in
one of two cases. The first is if the target task of the message in question is hung. In
this case, there is nothing much that can be done to resolve the problem. Your
system is in a mess. The more common case is the target task has been flooded with
messages that it can’t process in quick enough. This is sometimes a momentary
problem and sometimes not. If the target task can never process messages quickly
enough, you have a system design problem. This leaves us with the momentarily not
quick enough case. It is this case that we have most chance of doing something about
easily, although the messages below refer to all cases.

For these momentarily not quick enough cases, there are two possible solutions -
expand the buffer size or wait until it is empty. Which solution you use depends on
the particular circumstances involved. In some cases DRAMA will use the later
technique automatically. This is done for action completion and ERS messages. Here
DRAMA uses the “Request Buffer Empty Notification" facilities provided by IMP to
allow it to send the message when the buffer eventually empties. See
DitsRequestNotify() for more information. Note the DITS connection routines
(DitsPutConnectionHandler()) can disable this feature as can the flag
DITS_M_NO_FC_AC to DitsAppInit().

 What we will do here is look at the types of errors messages and where they indicate
the problem is.

The first example concerns sending a message to a local task. Again the actual tasks
being used are DTCL as the sender (equivalent of A in figure 19.3) and TICKER as the
target (equivalent of B). In this case you will receive an immediate error from the call

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 165

to DitsInitiateMessage() (or DitsObey() or DitsKick() etc.). This error
will look something like this

##DTCL: Unable to find space for 304 byte message (and 32 byte
header) �
DTCL: Ring index 3, write count 3 read count 2 �
DTCL: Write offset 336, read offset 0, length 688. Write is by
pointer. �
DTCL: Tested write offset 336, read offset 0.
DTCL: Buffer has 104 bytes reserved for system use.
DTCL:No imp space in receiver's (TICKER) buffer, length is 304. �
DTCL:Failed to start Action "TICK" to "TICKER" task.
DTCL:obey:%DITS-F-NOSPACE, There is not sufficient space in the
message receiver for this message

You can see at � what size message is being written. At � you can see three items
relating to the management of the buffer. The "write count" and "read count" are of
most interest. The difference between them indicates how many unread messages
there are in the buffer. In this case, there is one unread message. This value should
give you some idea of how much slower the receiver is running compared to the
sender. Note that the available length in this buffer is calculated by subtracting from
the "length" at � the reserved system space at �. In this example the value 584 bytes.
So assuming the TICKER task is running momentarily slow, you can probably fix this
problem by adding roughly 300 bytes to the MessageBytes item when getting the
path to TICKER. Alternatively, bump the MaxMessages item up by one.

The next case it consider is where task B is remote and it is still task B which has run
out of space. Remember that in this case, it is the receiver task on task B's machine
that is actually writing into task B. Since DRAMA can't work out what is going on
immediately, it must report in the form of an error message being returned. In this
case, task A gets a message with DitsGetEntReason() returning
DITS_REA_MESREJECTED. The error code will be IMP__NOSPACE (which will
probably be changed to DITS__NOSPACE at some stage in the future). For
example.

##DTCL:Action "TICK" to task TICKER@AAOSSI rejected, reason =
"%IMP-E-NO_SPACE, Insufficient space left in buffer"

If you have access to the stderr device of the receiver task, you should see
something like this

IMP_Receiver: Unable to find space for 304 byte message (and 32
byte header)
IMP_Receiver: Ring index 3, write count 3 read count 2
IMP_Receiver: Write offset 336, read offset 0, length 688. Write
is by pointer.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

166 19 Determining DRAMA Buffer Sizes

IMP_Receiver: Tested write offset 336, read offset 0.
IMP_Receiver: Buffer has 104 bytes reserved for system use.

This gives useful information but unfortunately does not mention the tasks involved.
You have to check for this output immediately the problem occurs otherwise it may
be confusing.

The third case to consider in this set is again where the target task is remote but
where it is the network tasks which are running slowly. It is that buffer to the
transmitter task being used for communication with task B that is full. Here the
message is exactly the same as for the local case. In the future, this may be changed to
indicate it is the buffer in transmitter which is full.

There is one other forward message case. This is where the task is remote but the
path is flow controlled. This is set by the DITS_M_FLOW_CONTROL flag to
DitsPathGet(). When a path is flow controlled, the IMP sending routines return
bad status if IMP is unclear if there is space at the receiving end for a message. Flow
control allows you to ensure your message will get through. IMP uses a series of
checkpoint messages to work out when the buffer is empty. You will see a message
like this.

DTCL:No imp space in receiver's (TICKER) buffer, length is 304,
Sync Needed
DTCL:Failed to start Action "TICK" to "TICKER" task.
DTCL:obey:%DITS-F-NOSPACE, There is not sufficient space in the
message receiver for this message

This is very similar to the local task buffer full case, but note the "Sync Needed" string
appended to the first line. Also there is less low level information reported. To get
around this problem, you can expand you buffer sizes (MessageBytes or MaxMessages)
or you can use the DitsRequestNotify() routine. This can be used in any of the
above cases, but is mandatory in this case. If just arranges for your action to be
notified with a message when the buffer is ready to use again.

Buffer full for replies.

We no address the reply case. DRAMA normally uses flow controlled buffers (see
above) for the reply direction. This allows DRAMA to make use of the IMP buffer
empty notifications to ensure messages are eventually sent. This is done for ERS
messages and action completion messages and should ensure that any messages that
can be sent will be. The cost is possible delays in sending messages due to having to
wait for the buffers to empt.

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 167

However, this is not done for MsgOut() and DitsTrigger() messages as a failure
is normally not critical with these. As a result, you must expect failure due to buffer
overflow from these calls. You can through explicitly use DitsRequestNotify()
yourself to handle these cases. When the problem occurs, you should expect to get
the DITS__NOSPACE error code returned by the routine. As per the previous
examples, you can expect a bunch of ERS messages, similar to the above examples,
which will help you determine where the problem was. If you want to handle the
error, remember to use ERS facilities (such as ErsPush() and ErsPop()) to catch
the ERS messages.

One problem with this facility is that once DitsRequestNotify() has been
invoked on a path, you cannot send a message along that path until the notification
has been received. Once again, DRAMA handles this internally for ERS and action
completion messages and again for MsgOut() and DitsTrigger() you must
handle it yourself if you desire the effect. When this happens, different error codes
are returned. For MsgOut(), DITS__NOTIFYWAIT_MSG is returned. For
DitsTrigger(), DITS__NOTIFYWAIT_TRIG is returned. Note that for each of
the three possible errors here, the solution is to use DitsRequestNotify(). The
reason for the different codes is so then if the errors are not caught, there is a clear
indication of what went wrong.

Remember here that if DitsRequestNotify() is being required a lot, it is possible
you should expand the reply buffer sizes (MaxReplies or ReplyBytes).

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 169

Part 3 – DRAMA User interfaces,
using and development.

20.The Simple Standard Tools

Overview

21.DTCL

22.DJAVA

23.Developing User Interfaces – C API

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 171

Part 4 – Building, Running and
releasing DRAMA programs.

24.DRAMA Directory Structures

25.Unix

26.VxWorks (Under Unix)

27.Generating DRAMA Makefiles

28.VMS

29. Microsoft Windows

30.Releasing DRAMA software

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 173

Part 5 – Other DRAMA Features.

31.IMP Startup Files.

32.Communicating with ADAM Tasks

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 175

Part 6 - DRAMA’s documentation,
building and installing DRAMA.

33.Documentation

34.Using the DRAMA CD ROM

35.Acquiring and/or building DRAMA for
Unix/VxWorks

36.Acquiring and/or building DRAMA for VMS

37.Acquiring and/or building DRAMA for Microsoft
Windows

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 177

Index

_

ALL á 60
LONG á 60
NAMES á 60

$

$DITS_DIR/dits_cc á 13
$DITS_LIB/dits_link á 13

A

Action
Blocking á 21–34
Handler á 10
name á 3
routine á 3
Staging á 47

Action Routine á 36
Actions á 1

Ending á 47
Multiple á 40
multiple simultaneous á 4
Rescheduling á 38
Simultaneous á 42
Simultaneous-Same Name á 42

ADAM á 1, 55
Application Part á 2
ARG á 18, 32, 50, 59

C++ Interface á 119, 55–61, 132
Arg C++

Constructors á 124
ArgGetc á 33
ArgGetd á 33
ArgGetf á 33
ArgGeti á 33, 51
ArgGets á 33
ArgGetString á 33, 51
ArgGetu64 á 33
ArgGetui á 33
ArgGetus á 33
ArgGetx á 33
ArgNew á 33
ArgPutc á 33

ArgPutd á 33
ArgPutf á 33
ArgPuti á 33
ArgPuts á 33
ArgPutString á 33
ArgPutu á 33
ArgPutu64 á 33
ArgPutui á 33
ArgPutus á 33
ArgPutx á 33
asynchronous Events á 137

B

Blocking Programs á 113
Buffer space allocation problems á 158

C

C++ á 19, 119–28
Efficiency Considerations á 132

cleanup á 83, 136
compiling á 13
Compiling SDS Structures, á see SDS
Control Tasks á 55–61, 55–61, 55–61, 55–61
co-operative multi-tasking á 42
Ctrl-C

Default Handling á 135

D

DCCP
Dits Interface á 132

DCPP á 19, 119
DcppHandler á 129
DcppMonitor á 129
DcppTask á 129
DcppUfaceCtxEnable á 129
default directory á 71
descrip.mms á 14
DiscardResponse á 132
DITS__ACTNOTACT á 140
DITS__COMPSENDERR á 162
DITS__CON_REJECTED á 160
DITS__FINDINGPATH á 84
DITS__NOSPACE á 112, 159, 162, 165, 167

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

178 INDEX

DITS__NOTIFYWAIT_MSG á 167
DITS__NOTIFYWAIT_TRIG á 167
DITS__UNKNACT á 140
DITS_ARG_COPY á 52
DITS_ARG_DELETE á 52
DITS_ARG_NODELETE á 52
DITS_C_NAMELEN á 114
DITS_CTX_KICKED á 47
DITS_CTX_OBEY á 47
DITS_CTX_UFACE á 47
DITS_DIR á 13
DITS_LIB á 13
DITS_LINK á 13
DITS_M_ACT_CLEANUP á 43
DITS_M_ACT_INFO á 43
DITS_M_FLOW_CONTROL á 82, 166
DITS_M_MAY_LOAD á 95
DITS_M_NO_FC_AC á 164
DITS_M_NOEXHAND á 137
DITS_M_PG_IMMED á 82, 84
DITS_M_SPAWNABLE á 43
dits_netclose á 82
dits_netstart á 82, 95, 161
DITS_REA_ASTINT á 142
DITS_REA_COMPLETE á 88
DITS_REA_DIED á 88, 105
DITS_REA_ERROR á 89
DITS_REA_EXIT á 97, 105
DITS_REA_LOAD á 97
DITS_REA_LOADFAILED á 97, 105
DITS_REA_MESREJECTED á 88, 98, 165
DITS_REA_MESSAGE á 89
DITS_REA_NOTIFY á 112
DITS_REA_PATHFAILED á 85
DITS_REA_PATHFOUND á 85
DITS_REA_RESCHED á 85
DITS_REA_TRIGGER á 88
DITS_REQ_END á 37, 42, 47
DITS_REQ_EXIT á 10, 37, 42, 47
DITS_REQ_MESSAGE á 48, 84
DITS_REQ_SLEEP á 48, 139
DITS_REQ_STAGE á 47, 48
DITS_REQ_WAIT á 39, 47, 48
DITS_TAKE_BOTH á 111
DITS_TAKE_CURRENT á 110
DITS_TAKE_FUTURE á 110
DitsActInfoType á 43
DitsActionRoutineType á 110
DitsActionsDetailsType á 36
DitsActionWait á 107, 109
DitsAppInit á 9, 56, 81, 83, 95, 97, 112, 136, 137,

147, 153, 155, 160, 161, 164
DitsAppParamSys á 55, 61, 63

DitsArgNoDel á 140, 141, 142
ditscmd á 38, 46, 63, 71
DITSCMD á 15
DitsDefault á 71
DitsDelete á 113
DitsDeleteTask á 136
DitsDeltaTime á 39
DitsDeltaTimeType á 39
DitsEnableTask á 140, 142, 143
DitsEntReason á 90
DitsErrorText á 69
DitsFindTaskByType á 115
DitsForget á 111
DitsGetActIndex á 142
DitsGetArgument á 49, 51, 89, 125, 140, 141, 142
DitsGetContext á 47
DitsGetEntName á 89, 97
DitsGetEntPath á 85, 88
DitsGetEntReason á 85, 88, 97, 105, 112, 141,

165
DitsGetEntStatus á 85, 88, 97, 105
DitsGetEntTransId á 85, 88, 111
DitsGetMsgLength á 83, 112, 155, 157
DitsGetParam á 87, 113, 114, 156
DitsGetParentPath á 157
DitsGetParId á 59
DitsGetPath á 81, 112, 149, 158
DitsGetPathData á 81
DitsGetPathSize á 112, 157
DitsGetSeq á 39, 40, 47
DitsGetTaskDescr á 115
DitsGetTaskID á 139, 141, 142
DitsGetTaskType á 115
DitsGetTransData á 80
DitsInit á 147, 153
DitsInitiateMessage á 63, 87, 88, 155, 156,

165
DitsInterested á 89, 90
DitsIsOrphan á 111
DitsKick á 87, 156, 165
DitsKill á 107
DitsLoad á 95, 96, 109, 111, 137
DitsLoadErrorStat á 105
DitsLoadErrorStatus á 97
DitsLoadErrorText á 97, 105
DitsLosePath á 85, 154
DitsMainLoop á 9, 37, 42, 47, 56
DitsMsgAvail á 113
DitsNameType á 114
DitsNotInterested á 90
DitsNumber á 9, 36
DitsObey á 87, 90, 112, 113, 149, 152, 155, 156,

162, 165

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 179

DitsPathGet á 81, 82, 83, 85, 87, 90, 95, 97, 109,
112, 149, 154, 157, 159, 162, 164, 166

DitsPathType á 80
DitsPeek á 113
DitsPutActions á 9, 35, 36, 43, 45
DitsPutArgument á 52, 89, 113, 156
DitsPutArgument() á 162
DitsPutConnectHandler á 160
DitsPutConnectionHandler á 164
DitsPutDefaultHandler á 71
DitsPutDelay á 39, 47, 48
DitsPutDelete á 139
DitsPutKickHandler á 47
DitsPutObeyHandler á 40, 47, 85
DitsPutOrphanHandler á 110
DitsPutParSys á 55, 56
DitsPutPathData á 81
DitsPutRequest á 10, 37, 39, 47, 90
DitsPutTransData á 80
DitsRequestNotify á 112, 164, 166
DitsRestoreTask á 140, 142, 143
DitsScanTasks á 115
DitsSetDebug á 72
DitsSetDetails á 115
DitsSetParam á 87, 113, 114, 156
DitsSignal á 142
DitsSignalByIndex á 142
DitsSignalByName á 48, 140, 141, 142
DitsSpawnCheckRoutineType á 43
DitsStop á 9, 137
DitsTakeOrphans á 110
DitsTransIdType á 80
DitsTrigger á 52, 88, 113, 150, 155, 156, 162,

167
DitsTrigger() á 162
DitsUfaceCtxEnable á 129
dmakefile á 14, 15
dmkmf á 15
DRAMA_FACILITIES á 70
DRAMA_INCLUDES: á 13
DRAMASTART á 12, 13
dtcl á 70
DTCL á 19
dtk á 70
DUI á 18
DuiMessageW á 109
DUL á 18
DulErsAnnul á 90
DulErsFinished á 90
DulErsInit á 90
DulErsMessage á 90
DulErsPutRequest á 90
DulErsRep á 90

DulLoadFacs á 70
DulLoadW á 109
DulReadFacility á 70

E

EPICS á 55
Error reporting á 73
ERS á 17, 150, 156, 162, 163, 164, 166
Ers Flags á 74
ERS Flags á 74
ERS_M_ALARM á 74
ERS_M_BELL á 74
ERS_M_HIGHLIGHT á 74
ERS_M_NOFMT á 74
ErsAnnul á 76
ErsFlush á 75, 76, 156, 163
ErsOut á 75, 156
ErsPop á 76, 77, 159, 167
ErsPush á 76, 159, 167
ErsRep á 73, 74, 75
ErsSPrintf á 78
ErsVSPrintf á 78
Event Driven á 5
exit á 9

F

FIFO á 147
Finding Tasks á 115
Fixed Part á 2

G

GIT á 19
C++ Interface á 132
Git class á 124
GitArgGet* functions á 124

GIT C++ Interface á 119
Git Library á 51
GitArgGetD á 127
GitArgGeti á 51
GitArgGetI á 127
GitArgGetL á 125
GitArgGetS á 126, 133
GitArgGetStruct á 122
GitBool á 125
GitEnum á 126

Lookup á 126
SetValue á 126

GitInt á 127

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

180 INDEX

GitPutDelay á 39, 139
GitReal á 127
Global Buffer Space á 83, 147, 151, 152, 153, 158,

159, 160, 161

H

hds2sds á 32

I

imake á 14
IMP á 18
Imp Master á 95
IMP__CANT_FIT á 163
IMP__NO_SPACE á 159
IMP__NOSPACE á 165
IMP_NET_KBYTES á 153, 160
IMP_SCRATCH á 147
include files á 10
Inherited Status

C++ á 121
Initialisation

Dits á 9
interrupts á 38
Interrupts

Communicating With á 137

K

kill -9 á 136

L

linking á 13
Loading Tasks á 21–34

M

main loop á 9
Makefile á 13, 14, 15
malloc á 147
mapped files á 147
Master Task á 137
MaxMessages á 83, 154
MaxReplies á 83, 154
MESS á 17
message á 87
Message

completion á 4
Get á 2, 60
Handler á 10
Monitor á 2
Obey á 1
Reply

Arguments á 89
Set á 2
Sizes á 113

Message Queues á 147
MessageBytes á 83, 154
Messages á 6

abort á 4
action completion á 162
blocking á 4
Control á 71

DEBUG á 71
DEFAULT á 71
DUMPPATHS á 71
DUMPTRANS á 71
MESSAGE á 71

error á 4
Get á 55, 61
Get Parameter á 113
informational á 4
Kick á 21–34, 49
MGET á 61
Monitor á 61
Multiple Parameter Get á 114
names á 9
Obey á 21–34, 49, 88, 89
Sending á 21–34
Set á 55
Set Parameter á 113

MessFacility á 69
messgen á 12, 68
MESSGEN á 17
MessGetMsg á 69
MessNumber á 69
MessPutFacility á 69, 71
MessPutFlags á 69
MessSeverity á 69
MsgOut á 10, 37, 51, 89, 150, 155, 156, 162, 163,

167

N

Networking á 82
Non-Blocking Programs á 113

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 181

P

Packages
Mess. á 12

Parameter Systems á 55–61
Parameters á 2, 55–63

Getting and Setting á 113
Long Names á 114
Readonly á 61

Path á 80
Buffer Sizes á 113

Paths á 21–34
Polling

avoiding á 4
Ports á 4

Q

Queue Peeking á 113

R

ReplyBytes á 83, 154
Rescheduling á 38, 47
return

from main á 9
ring buffer á 159
RS232 á 4
Running á 15

S

SDP á 18, 21–34
C++ Interface á 119, 132
Long Names á 114

SDP Type
SDP_BYTE á 58
SDP_CHAR á 58
SDP_DOUBLE á 58
SDP_FLOAT á 58
SDP_I64 á 58
SDP_INT á 58
SDP_SDS á 58, 59
SDP_SHORT á 58
SDP_STRING á 58
SDP_UBYTE á 58
SDP_UI64 á 58
SDP_UINT á 58
SDP_USHORT á 58

SdpCreate á 58

SdpCreateItem á 59
SdpGet á 60
SdpGetc á 59
SdpGetd á 59
SdpGetf á 59
SdpGeti á 59
SdpGets á 59
SdpGetSds á 59, 60, 156
SdpGetString á 59
SdpGetu á 59
SdpGetu64 á 59
SdpGetui á 59
SdpGetus á 59
SdpInit á 56, 61
SdpNames á 60
SdpParDefType á 58
SdpPutc á 59
SdpPutd á 59
SdpPutf á 59
SdpPuti á 59
SdpPuts á 59
SdpPutString á 59
SdpPutu á 59
SdpPutu64 á 59
SdpPutui á 59
SdpPutus á 59
SdpSet á 61
SdpSetReadonly á 61
SdpUpdate á 60
SDS á 17, 21–34, 49, 56, 87

Arg á 32
C++ Interface á 119, 21–34
Compiler á 29
External Format á 27
formats á 21

external á 21
internal á 21

Getting Data á 24
id á 22
Putting data á 24
Type Codes á 23
Type Conversion á 33
Utility Routines á 27

SDS File I/O á 28
SDS Type

SDS_BYTE á 23
SDS_CHAR á 24
SDS_DOUBLE á 24
SDS_FLOAT á 24
SDS_I64 á 24
SDS_INT á 24
SDS_SHORT á 23
SDS_UBYTE á 23
SDS_UI64 á 24

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

182 INDEX

SDS_UINT á 24
SDS_USHORT á 23

SDS Utility Programs á 31
sds2hds á 32
SdsAccess á 26
sdsc á 29
SdsCell á 26
SdsCompile á 29
SdsCopy á 27, 49, 89, 122
SdsDelete á 25, 122
sdsdump á 32
sdsexam á 32
SdsExport á 26, 27
SdsFind á 26, 28, 59, 60, 121
SdsFindByPath á 28, 32, 61
SdsFreeId á 25, 28, 122
SdsGet á 24, 26
SdsGet() á 29
SdsId á 120, 122, 123, 132

COut á 123
DeepCopy á 121, 122
Exporting SdsIdType á 123
Importing SdsIdType á 122
ShallowCopy á 121, 122, 123

SdsIdType á 49, 120
From SdsId á 123
Into SdsId á 122

SdsImport á 26
SdsIndex á 26
SdsInfo á 26
SdsInsert á 27
SdsInsertCell á 27
sdslist á 31
SdsList á 27, 31, 120
sdslistpath á 32
SdsNew á 22, 34
SdsPointer á 59, 60
sdspoke á 32
SdsPut á 24
SdsPut() á 29
SdsPutStruct á 60
SdsRead á 28, 121
SdsReadFree á 28, 122
SdsSize á 26, 27
SdsWrite á 28
select á 147
Semaphores á 147
Shutdown á 9
Signal Handlers

Communicating With á 137
sprintf á 77, 78
Starlink á 1, 32, 55
Status

Convention á 10, 65

STATUS__OK á 10, 65
status.h á 65
StatusType á 10, 36, 65
strtol á 71, 72

T

Task
Exiting á 47
Name á 9

Task Deletion
VMS á 135
VxWorks á 135
WIN32 á 136

Task Descriptions á 114
Task Types á 114
Tasks

Finding á 115
Searching for á 115

TCL á 19
Threads

explicit á 4
timeouts á 38
Tk á 19
Transaction Id á 80

U

UFACE á 110
User interfaces á 2
User Interfaces

writing á 4

V

VMS ASTs
Communicating With á 137

VMS global sections á 147
VMS MESSAGE á 70
vsprintf á 78

W

WIN32 Threads
Communicating With á 137

X

xditscmd á 70

Last printed 8/4/23 1:09:00 PM INCOMPLETE DRAFT

 DRAMA 183

Bibliography

i John K. Ousterhout, Tcl and the Tk Toolkit (Reading, Massachusetts: Addison-Wesley). 1994
ii Jeremy Bailey, Self-defining Data System (SDS) (Anglo-Australian Observatory, Epping N.S.W,
Australia, DRAMA Document number 7). 31st October 1994
iii Tony Farrell, Generic Instrumentation Tasking Specification (GIT) (Anglo-Australian Observatory,
Epping N.S.W, Australia, DRAMA Document number 9). 18th January 1994
iv Tony Farrell, Distributed Instrumentation Tasking System (DITS) (Anglo-Australian Observatory,
Epping N.S.W, Australia, DRAMA Document number 5). 22nd December 1998
v Tony Farrell, A portable message code system (MESS) (Anglo-Australian Observatory, Epping N.S.W,
Australia, DRAMA Document number 6). 23nd February 1995
vi Tony Farrell, DRAMA Error Reporing System (ERS) (Anglo-Australian Observatory, Epping N.S.W,
Australia, DRAMA Document number 4). 16th March 1994
vii Tony Farrell, Distributed Instrumentation Tasking System (DITS) (Anglo-Australian Observatory,
Epping N.S.W, Australia, DRAMA Document number 5). 22nd December 1998
viii Tony Farrell, Distributed Instrumentation Tasking System (DITS) (Anglo-Australian Observatory,
Epping N.S.W, Australia, DRAMA Document number 5). 22nd December 1998

