
DRAMA 2 - AN EVOLUTIONARY LEAP FOR THE DRAMA
ENVIRONMENT FOR INSTRUMENTATION SOFTWARE

DEVELOPMENT

T. Farrell, K. Shortridge, Australian Astronomical Observatory, Australia.

Abstract
The DRAMA Environment provides an API for

distributed instrument software development. It originated
at the Anglo-Australian Observatory (now Australian
Astronomical Observatory) in the early 1990s, in
response to the need for a software environment for large
distributed and heterogeneous systems, with some
components requiring real-time performance. It was first
used for the AAOs 2dF fibre positioner project for the
Anglo-Australian Telescope. DRAMA is used for most
AAO systems and is or has been used at various other
observatories looking for a similar solution. Whilst
DRAMA has evolved and many features were added, the
overall design has not changed. It was still a largely C
language based system, with some C++ wrappers. It did
not provide good support for threading or exceptions.
Ideas for proper thread support within DRAMA have
been in development for some years, but C++11 has
provided many features that allow a high quality
implementation. We have taken the opportunity provided
by C++11 to make significant changes to the DRAMA
API, producing a modern and more reliable interface to
DRAMA, known as DRAMA2.

INTRODUCTION
The DRAMA API [1] remains the AAO’s primary tool

for constructing complex instrumentation systems and has
been/is being used by various other observatories. With
an approach based on the older Starlink ADAM
Environment [2], it implements a tasking model; with
each named task responding to named messages of a
number of different types. In a DRAMA “System”, tasks
can run across different hosts in a heterogeneous
environment. DRAMA was implemented from about
1992 and was designed to be highly portable at a time
before ANSI C was available on all machines of interest.
It has been run on many flavours of UNIX/Linux, VMS,
VxWorks and MS Windows, and provided the ability to
write soft1 real-time applications and with good
performance on, for example, 30Mhz 68020 CPUs. The
flexibility allowed systems as complex as the AAO’s 2dF
system [3] to be implemented, making use of the most
appropriate hardware for each job across a distributed
system.

Most work is a DRAMA task is done in response to
“Obey” messages – in effect, command messages;
implementing “Actions”. The design approach
implements co-operative multi-tasking; multiple actions

can be running at the same time but must deliberately
return control to the DRAMA message reading loop
between events to allow other actions to run and for the
action itself to be “Kicked” – sent a message to change its
behaviour in some way (typically, but not always, to
cancel the action cleanly). The approach has worked well
and a strongly objected-oriented task design approach was
implementable for tasks written in C.

Attempts were made starting about 1994 to implement
C++ interfaces for DRAMA, but the results were
relatively poor and various different approaches were
tried. One of the early issues was the poor portability of
early C++ compilers, some features such as templates and
exceptions were not reliably implemented and were not
portable. Another was that we were still learning the best
approaches to use.

Whilst DRAMA tasks using threads of various types
have been implemented over the years, DRAMA itself
has not supported using threads, with its own co-operative
multi-tasking technique sufficient in most cases being
more portable then threads were. In the C API, task
authors must work around DRAMA when using threads;
but in recent times, many libraries for component control
have presumed threads are available and thread support
has become widespread and is presumed to be available
by most software engineers. We had been working on
designs for proper thread support for DRAMA over some
years, but had not yet implemented it.

C++11 [4] was a major revamp to the C++ language:
Threads are now supported using a well thought out
approach, by the compilers and standard libraries; Many
new features are provided by C++11 that assist library
implementers to construct quality interfaces; compilers of
interest (GCC and Clang in particular) have implemented
the full feature set on machines of interest (Linux and
Mac OS X). We have taken advantage of the upgrade of
C++ to implement DRAMA2, which will simplify writing
and maintaining complex DRAMA tasks.

BASIC DRAMA
To understand DRAMA2, a quick introduction to

DRAMA is needed. A DRAMA task executes a message
receive loop that dispatches control to event/message
handlers when messages arrive. A “Path” is a connection
to another task, which is opened as required by
application specific code and then used to send messages.
There are various types of messages sent between tasks,
which may be running across various machines on the
network.

 __

1 “Soft” Real-Time: Don’t bet a life on an interrupt response, but good
enough for ground based astronomy.

Application specific code is provided to handle the
“Obey” and “Kick” message types. The “Obey” message
type causes application specific code implementing an
“Action” of a specified “Name” to be run. “Kick”
messages are used to communicate with a running Action
of the “Name” in the message. The implementation of an
action of a given “Name” is provided by application
specific C language routines that are invoked in response
to messages by the DRAMA event loop.

A Parameter system allows a task to publish
information about itself, which can be used for enquiries
and to display information on GUIs. Get/Set/Monitor
type messages containing the parameter “Name” are used
to work with parameters in other tasks.

Most messages can have an “Argument” attached,
which provides a way of moving data across machines.
These arguments are implemented using Self Defining
Structures (SDS). These can be of any size and are
designed to allow large amounts of data to be sent
efficiently between tasks, both locally and across
heterogeneous networks configurations. They are used for
simple command arguments, complex structures and large
image transfers.

Internally, a single global variable (a large structure) is
used to maintain all the DRAMA details – in retrospect,
possibly a mistake, but this allows a simpler API that did
not need a DRAMA task pointer to be passed to all
DRAMA API calls.

THE APPROACH TO DRAMA2
The basic approach used in DRAMA2 is based on work

previously done to implement DRAMA GUIs with
JAVA. In this work, the JAVA Native Interface (JNI) was
used to allow JAVA to invoke and be invoked by the
DRAMA API. The approach was directed to
implementing GUIs but allowed many of the concepts
that are required for DRAMA2, to be developed. Four
particular areas drive the design:

Implementation as wrapper around the C API
The DRAMA JAVA interface proved that dramatic

changes to the C level interfaces to DRAMA are not
required for thread and exception support. By
implementing DRAMA2 as a set of wrappers around
DRAMA C APIs, compatibility with the large set of
existing tasks can be easily maintained and DRAMA2
could be implemented quickly.

Only one Thread reading DRAMA messages.
There is one and only one thread that actually blocks

for and reads DRAMA messages from the underlying
message queue. Most of the “DRAMA” internal
processing is done within this thread. Other threads can
send DRAMA messages (and make other DRAMA API
calls) but cannot actually read the messages directly.
Much potential complexity is removed and no changes
are required to the DRAMA C language internals when
using this approach. If another thread needs to wait for a

DRAMA message to occur, it must wait on a C++
condition, which is notified by the DRAMA thread when
the message arrives.

Locking access to DRAMA structures
Locking is important to get right! Systems with

multiple locks help to avoid lock wait delays, but
significantly increase the complexity of the design
required to ensure avoiding deadlocks. Since DRAMA2 is
an API available to implement applications, it is much
harder to avoid deadlocks when using multiple locks. As
a result, only one lock is used and it must be taken by
most methods that invoke the DRAMA C API. Use of
the lock is normally internal to the DRAMA2 methods,
but it can be used by application specific code to access
any DRAMA C API not yet available or for application
specific locking. Use of the DRAMA2 lock as the only
lock in the application would avoid deadlock. The
DRAMA2 lock is safe for recursive use – a thread that
has already taken the lock will not deadlock if it attempts
to take it a second time.

The DRAMA design allows the DRAMA2 message
read thread to block waiting for a message without taking
the lock. That thread only takes the lock when processing
a message. Since the lock is free any time the DRAMA2
message read thread is waiting for a message, there is
plenty of opportunity for application threads to lock
access to DRAMA and send messages themselves.

Status and error reports vs. C++ Exceptions
The DRAMA C API uses an inherited status

convention. Most functions have a “status” argument,
which is a pointer to an integral type. Functions are
expected to check the value pointed to is zero on entry. If
it is not, they return immediately. If an error occurs, status
is set to a non-zero value. The Inherited status convention
neatly avoids the long series of nested if statements
typical in the use C APIs that returns a value to indicate if
they failed. The integer status value is passed as the
result of DRAMA messages, allowing other tasks to
determine if an Action has failed and to interpret the
status value. An Error Reporting System (ERS) enables
extra contextual information to be added when errors
occur.

In C++, it is natural to replace the inherited status
approach and ERS by exceptions. An exception class is
provided which is a sub-class of std::exception. Any
DRAMA2 method invoking a DRAMA C API must
check the status returned and, if bad raise an exception.
The DRAMA2 exception class stores the integer status
value and information about the context and location of
the exception.

At any point where the DRAMA C API must invoke a
DRAMA2 method, there must be an interface function.
that has an inherited status argument. This function must
catch any exception thrown by DRAMA2. If the
exception is the DRAMA2 exception, the original status
value will be available and can be returned to the C API
as the status of the call, otherwise another status value

will be returned. Any extra context available in the
exception will be reported using ERS.

TASK STRUCTURE
A Simple Task.

Example 1, below, shows “Hello World” in DRAMA2.
This program implements a task named “TASK1”, which
has just one Action – named “HELLO”. Sending an
Obey message with the name “HELLO” will result in the
message “Hello World” being output and the task then
exiting. The action is implemented by sub-classing the
abstract class “MessageHandler” providing an
implementation of “MessageReceived()”. Any number of
actions can be added in a similar way and they don’t
normally cause the task to exit, and may be invoked
multiple times in sequence.

#include "drama.hh"
using namespace drama;
// Action definition.
class Action1 : public MessageHandler{
private:
 Request MessageReceived() override {
 MessageUser("Hello World");
 return RequestCode::Exit;
 }
};
// Task Definition
class ExTask : public Task {
private:
 // actions
 Action1 Action1Obj;
public:
 ExTask(const std::string &taskName)
:
 Task(taskName) {
 Add("HELLO",
 MessageHandlerPtr(&Action1Obj,
 nodel()));
 }
};
// Main program.
int main() {
 CreateRunDramaTask<ExTask>("TASK1");
 return 0;
}

Example 1: “Hello World” in DRAMA2

Threaded Actions.
In Example 1, the “HELLO” action is running in the

main DRAMA2 thread. Whilst it can “Reschedule”, in the
traditional DRAMA way to return control to the message
thread, the intent of DRAMA2 is to support running
actions in threads. The class “thread::TAction” is an
abstract sub-class of “MessageHandler”. The user of this
class must provide the method “ActionThread”, which is
invoked within a thread when an Obey message of the

specified name is received. When the thread completes,
DRAMA2 is informed and the action is marked as
completed. Importantly, all details of thread creation;
joining the thread etc. is hidden by DRAMA2. Any
exception thrown by the thread is reported via DRAMA2
as an action failure – the task does not abort. Example 2
below shows a simple implementation of a thread action.

// Action definition.
class Action1 : public
thread::TAction{
public:
 Action1(std::weak_ptr<Task>
theTask):
 TAction(theTask) {}
private:
 void ActionThread(const sds::Id &)
override {
 MessageUser("Hello World - from a
thread");
 }
};

Example 2: Threaded “Hello World” in DRAMA2

Action threads can create their own sub-threads, which
can interact with DRAMA, but the implementer is then
responsible for handling creation, joining the thread,
dealing with exceptions in the thread, etc.

An important requirement for implementing access to
DRAMA APIs from threads is to get the DRAMA
“Context” right. In a normal DRAMA task, with only one
thread runing, the DRAMA API has been able to presume
that certain components of the DRAMA Global structure
indicate which action is running, and other information
about that action. When a threaded action is started by
DRAMA2, this information is captured just before the
thread is started. Later, any call to a DRAMA C API from
the threaded action must first lock access to DRAMA,
save the current DRAMA context and then enable its own
DRAMA context. This must be undone when the call to
the DRAMA C API is complete. An object of a particular
DRAMA2 class is used to wrap this up using RAII
(Resource Allocation Is Initialisation) to ensure it is
undone correctly even is an exception is thrown. This is
done transparently by the DRAMA2 API, but is available
to application code if access to other DRAMA C API’s is
required.

Kicking Threaded Actions
A DRAMA Action can be “Kicked”, which provides a

method for other tasks to communicate with a running
action. Often used for Action cancellation, Kick messages
are flexible and a system design may use them to update a
running action. The “WaitForKick()” method and related
methods allow a thread to wait for a kick message to be
received.

Alternatively, a “KickNotifier” object may be created
before say entering a CPU intensive loop. These objects
create a thread that waits for a kick message. The caller

can ask the object if a kick was received and respond
correctly.

Sending Messages
A “Path” class is provided to enable sending DRAMA

messages to other tasks. In traditional C DRAMA,
message sending does not block and an action must
explicitly reschedule to message handle replies. In
DRAMA2, message sending is only possible from a
threaded action. The thread, but not the task, is blocked to
await replies. As a threaded action can have child
threads, they may have any number of messages
outstanding at any time. Example 3 shows how to send
an Obey message to a server. In this case, the action
name is “HELLO”.

Path server(…)
…
server.Obey(this, HELLO);

Example 3: Sending an Obey message.

There are various message sending methods, including
the ability to monitor for changes to the values of
parameters in other tasks. By default, the methods will
block until the subsidiary action completes, but there are
features allowing overriding of the default processing of
the various possible replies to a message.

OTHER FEATURES
SDS

The sds::Id class provides access to DRAMA’s SDS
objects, used to send data between tasks. Action
implementations can access any structure sent to them
and can send such structures as arguments in any message
they send. Some complexities of the underlying SDS
system made writing a clean C++ interface hard prior to
C++11. In C++11, the move assignment and move copy
operators proved liberating, allowing an effective and
relatively clean interface to be constructed.

The “sds::Id” class is extensive, providing methods
allowing the building and accessing of complex
structures, as well as providing simple ways of building
and accessing typical command line arguments.

The sds::Id class allows SDS structures to be written to
and read from files, buffers of various forms (e.g. for
sending in messages) and for details of such structures to
be listed to streams and other locations, for debugging
purposes. Simple and highly efficient access to large
arrays is provided.

Accessing Command Arguments
All arguments to actions are sent in an SDS structure,

but there is a standard approach to command arguments,
which allows simple generic programs to be used send to
obey messages to any task. Various simple methods are
provided by the sds::Id class to construct such arguments.
In the action receiving the message, sds::Id class methods
can be used, but there is also an alterative interface – via

the “gitarg” namespace. These are a series of classes that
create sub-classes of standard types initialised from an
SDS structure. For example, a gitarg::Bool uses an SDS
structure to initialise a Boolean type, accepting for
example string values “YES” and “NO” to indicate the
value.

GUIs
DRAMA provides a number of GUI toolkits, Java and

Tcl/Tk based GUIs being commonly used at this point.
These will continue to work with DRAMA2 tasks.
Additionally, new toolkits will be constructed using
DRAMA2, with Python likely to be the first.

The support for working with threaded systems easily
ensures DRAMA2 can be used with many other modern
systems. The first DRAMA2 task implemented outside
the package itself was a GUI using the Qt widget set, an
extensively threaded environment.

Documentation and Regression Testing
An important part of the implementation of DRAMA2

was to ensure the documentation was created with the
package, rather then the tradition of being tacked on later.
The “doxygen” tool was chosen as the interface
documentation tool and all interfaces have been
documented as the code was written.

A 130-page manual has been generated, working
through all the many features of DRAMA2. The manual
includes a large number of code examples, all of which is
available as compilable code. Generation of the detailed
manual and the required examples quickly highlighted
various flaws or unnecessary complexities in the initial
interfaces, allowing them to be revamped before release.

As example programs were generated to demonstrate
and test features they have been added to our regression
test facilities. As a result, any change to DRAMA2, or the
underlying DRAMA software, is automatically subject to
extensive testing.

CONCLUSION
DRAMA2 has quickly modernized the development of

DRAMA tasks. It is well documented and allows reliable
tasks to be written quickly. It allows sequenced code to be
written for sequenced jobs, but with all the efficient non-
blocking DRAMA messaging facilities available. Much
of the (potentially risky) complexity of creating threaded
distributed applications is hidden from programmers
using DRAMA2, in the most common cases.

REFERENCES
[1] T.J. Farrell, K. Shortridge, J.A. Bailey, “DRAMA:

An Environment for Instrumentation Software,”
Bulletin of the American Astronomical Society,
Volume 25, No 2, (1993).

[2] Allan P. M., “The ADAM software environment,”
Astronomical Data Analysis Software and Systems I,
126 (1992)

[3] Taylor K., et al., “Anglo-Australian Telescope's 2dF
Facility,” Proc. SPIE 2871 , (1997)

[4] ISO/IEC 14882:2011 “Information technology --
Programming languages -- C++” (2011)

